Jones potential. The agreement is also quite good [except for the height of the first peak of S(k)] with the neutron-scattering experiment of Henshaw⁹ (argon in the vicinity of the triple point). There, a comparison can be made also with the x-ray scattering experiment of Gingrich and Thomson.¹⁰ The difference is guite serious, more than 5%. It should be noted that, there also, the x-ray scattering intensity shows a rather irregular behavior for large k's.

The question can then be raised of the precision of the x-ray scattering experiment and of the possibility of obtaining, from their use, quantitative information on the interaction. We suggest that a more systematic comparison is made with neutron experiments, which may lead to a reinvestigation of the various correction errors and to a better determination of the form factors that are necessary to extract the structure factor from the measured x-ray intensities.

*Postal address: Laboratoire de Physique Théorique et Hautes Energies, Faculté des Sciences, Orsay, France.

†Laboratoire associè au Centre National de la Recherche Scientifique.

¹P. G. Mikolaj and C. J. Pings, J. Chem. Phys. 46, 1401, 1412 (1967).

²P. G. Mikolaj and C. J. Pings, Phys. Rev. Letters <u>15</u>, 849 (1965). ³L. Verlet, Phys. Rev. <u>165</u>, 201 (1968).

⁴R. D. Weir, I. Wynn Jones, J. S. Rowlinson, and G. Saville, Trans. Faraday Soc. 63, 1320 (1967).

⁵J. A. Baker, W. Fock, and F. Smith, Phys. Fluids

<u>7</u>, 897 (1964). ⁶D. Levesque and J. Vieillard-Baron, to be published.

⁷L. Verlet and D. Levesque, Physica <u>36</u>, 244 (1967). ⁸G. T. Clayton and L. Heaton, Phys. Rev. 121, 649

(1961).

⁹D. G. Henshaw, Phys. Rev. <u>105</u>, 976 (1956).

¹⁰N. G. Gingrich and C. W. Thomson, J. Chem. Phys. 36, 2348 (1962).

PLASMA RESPONSE TO THE SUDDEN APPLICATION OF AN ELECTRIC FIELD*

John S. DeGroot and Kenneth R. MacKenzie Department of Physics, University of California, Los Angeles, California (Received 26 February 1968)

Dreicer¹ used the rapid decrease of the Coulomb cross section with energy to show that there is a critical runaway field E_{γ} . Buneman² showed qualitatively that instabilities will grow and stop the runaway process. Field and Fried (FF),³ using a three-dimensional quasilinear theory for wave particle interactions, studied the sudden application of electric fields (10 and 50 times E_{γ}) to a fully ionized collisionless hydrogen plasma with $T_e/T_i \gg 1$ (and Debye numbers $N_{\rm D} = 2 \times 10^5$ and $N_{\rm D} = 10^6$, respectively). Due to the growth of ion-acoustic waves they found that the electron drift velocity (which initially increased as $|v_d| = eEt/m$) reached a maximum and then decreased to about $\frac{1}{4}$ the peak value, at which point the approximations become invalid.

In our experiment a pulsed, azimuthally uniform, 1% ionized plasma is produced by photoionization.⁴ The photons are generated over a 3- μ sec period at the center of a 60-cm-diam chamber by discharging 10 μ F at 10 kV through a spark of the type used by Ballofet.⁵ Subsequently the density decays about $1.0 \% / \mu sec$. In spite of the high xenon mass, this plasma can be matched to the FF theory better than a hydrogen plasma which contains molecular ions by simply

scaling v_d as (at. wt)^{1/4}. Also, the photoionization cross section is a factor of 9 lower than xenon. Densities of 5×10^{11} and values of $N_{\rm D} = 10^6$ could be produced by raising the pressure to 10^{-3} Torr: but collisions entered within the times of interest, so measurements were typically made at 5×10^{-5} Torr with densities of 10^9 and $N_{\rm D} \simeq 10^5$. The FF value of $E/E_{\gamma} = 10$ was extrapolated to values above 40 to make the growth of waves occur within the electron-neutral collision time.

The E field is induced by a transformer shown in Fig. 1, consisting of punched laminations (of Mumetal-to ensure essentially zero magnetic field in the plasma). The ionizing photons pass between them and enter a plastic torus through a nylon screen with Debye-length apertures. The plasma immediately loses fast electrons and forms a potential well which contains the plasma electrons as v_d increases. A one-turn primary and auxiliary secondary are shown above a slotted metal support ring (forming a closed circuit outside the laminations) which shields the plasma from the primary and secondary electrostatic fields, leaving only the uniform induced stepfunction E field in the plasma secondary (≈ 5

FIG. 1. A section of the toroidal transformer consisting of 300 Mumetal laminations lined up to intercept minimum photon flux.

 $\times 10^{-2} V/cm$).

The total current in the plasma (≈ 0.8 A, shown in Fig. 2 with a correction for decay) is found by taking the difference in the primary current with and without plasma. A maximum is seen which agrees with FF, but the decrease is less marked. This was expected, since waves within 1 cm of the wall should be lost before they can grow appreciably. However, the presence of a decelerating mechanism is clearly shown by an induced voltage on the auxiliary secondary at the time of maximum negative slope (like the induced voltage when a transformer secondary is opened). Any other resistive process exists at t = 0.

The behavior of the current at the center of the torus was measured with a double probe consisting of two flat plates (each 14 mm² in area) separated by a thin insulator. When oriented perpendicular to the current flow, the difference in electron collection is, to lowest order, proportional to v_d . A typical result is compared with calculations in Fig. 2. The theory has been extrapolated by multiplying the calculated v_d and t by $(M^{1/4}/a_e)(E_r N_D/E)^{1/2}$ and $M^{1/4}\omega_{pe}(E/E_r N_D)^{1/2}$, respectively $(a_e$ is thermal speed; M is at. wt). Figure 2 also shows qualitatively what happens when collisions are made to predominate by raising the pressure and admitting helium. In our device, helium, with its 24-eV potential, has an ionization efficiency some two orders of magnitude lower than xenon.

Although the expected fluctuations near the ion

FIG. 2. (a) Auxiliary secondary voltage corresponding to $E = 6.8 \times 10^{-2}$ V/cm and $n = 5 \times 10^9$, showing the induced emf. (b) Total current in the plasma secondary. (c) Double probe display of the center drift velocity with $E = 4 \times 10^{-2}$ V/cm and $n = 1 \times 10^9$. (d) Collisions eliminate these effects - obtained by admitting helium, with $E = 3.4 \times 10^{-2}$ V/cm and $n = 11 \times 10^9$. (c) is compared with theory with no adjustable parameters. The error bars show variations obtained under nearly identical conditions (±10 % in density). $\theta_e = 1.5$ eV and θ_i = 1/40 eV for all curves.

plasma frequency have been observed, the attempts to examine the details of growth and the spatial nature of the waves (predicted $\lambda \simeq 0.04$ cm) have so far been unsuccessful.

We wish to acknowledge useful discussions with Professor B. D. Fried.

^{*}Work supported in part by Air Force Office of Scientific Research Grant No. 567-66 and a National Aeronautics and Space Administration traineeship.

¹H. Dreicer, Phys. Rev. <u>115</u>, 238 (1959).

²O. Buneman, Phys. Rev. <u>115</u>, 503 (1959).

³E. Field and B. Fried, Phys. Fluids <u>7</u>, 1937 (1964). ⁴J. Hyman and K. MacKenzie, Rev. Sci. Instr. <u>38</u>,

^{251 (1967).}

⁵G. Ballofet, J. Phys. (Paris) 25, 73A (1964).