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OBSERVATION OF QUANTUM PHASE NOISE IN A LASER OSCILLATOR*
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FIG. 1. Block diagram of system used to observe
quantum phase fluctuations.

By heterodyning together two stable 6328-A He-
Ne lasers, with one laser operating at very low
power, quantum phase fluctuations caused by
spontaneous emission have been observed. Re-
sults, although preliminary, seem in good agree-
ment with the predictions of Schawlow- Townes
and others. '

Neglecting amplitude fluctuations, the beat
note between two laser oscillators may be writ-
ten v = Vocos(&dot+ y), where Iuo is the mean fre-
quency and qr(t) the randomly varying'phase.
Since the instantaneous beat frequency is &,
+y(t), the power spectral density G&( f) of the
quantity y(t) may be determined with an rf fre-
quency discriminator centered at wo, followed
by an audio-wave analyzer (Fig. 1). With appro-
priate instrumentation one can also measure the
analytically related mean-square phase jitter
(b,y'(7))=-([y(t+T) —p(t)]') as a function of the
time interval T.

In real lasers the random phase variation y(t)
includes an "external" contribution ye(t) due to
acoustic noise, structural vibrations, and plas-
ma disturbances, plus a usually much weaker
contribution y&(t) due to quantum noise. In our
experiments the external disturbances occur pri-
marily at low audio frequencies, with

G&e (f)
-1/f' [see Fig. 2(a,)] and (b.y e'( T))- T' The re.-
sulting beat-note power spectral density G„(f) is
Gaussian with a, linewidth typically b,f = 3.5 kHz
in our apparatus, essentially independent of la-
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FIG. 2. (a) Typical discriminator noise output spec-
trum as measured by audio-wave analyzer, showing
1Jf2 portion due to external disturbances and flat por-
tion due to quantum noise (or, in some cases, to dis-
criminator characteristics). (b) Quantum phase-noise
linewidth contribution, as measured by flat discrimina-
tor noise level, versus oscillation power level of laser

Also shown are the Schawlow-Townes theoretical
result assuming N2/(N& —NI) =1 and the results of exper-
imental phase-jitter measurements at a single fixed de-
lay &=167 nsec.
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ser power level. By contrast, the quantum con-
tribution should have a white-noise spectrum
Gp&(f) = 4mtifq and a phase jitter (Ay& (7))
= 2Tt~&T. The Schawlow- Townes prediction is

~/f(t f )'
cav 2

&2-(ga/gi)Ni'

where f is the oscillation frequency, b,fcav the
"cold"-cavity bandwidth, P the laser-oscillation
power level, and N, and N, the upper and lower
level populations. Except at our lowest power
levels, the quantum contribution to the total beat-
note spectral density is considerably less than
the Gaussian external contributions. The quan-
tum contributions are, however, separable by
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examining Gy( f) at high enough frequencies, or
(6cp'(r)) at short enough times.

The experimental apparatus (Fig. 1) is basical-
ly the same as reported earlier. ' Laser I., has
a relatively high-transmission output mirror
(1.7%) to enlarge Lfcav and thus enhance the
quantum line broadening. A slow power-stabili-
zation loop provides stable operation at low pow-
er levels by piezotuning the cavity close to the
edge of its oscillation range. ' Laser L,, is
locked 30 MHz from I., by a slow automatic-fre-
quency-control loop. The signal- to-noise ratio
(S/N) of the beat-note depends upon signal power
P from I.y and photocathode quantum efficiency
in the usual way. Since these measurements nec-
essarily involved low and decreasing S/N, it was
necessary to verify that measured noise line-
width increases at low P did not simply rep-
resent equipment characteristics. This wa, s
checked following each measurement by operat-
ing I., at a higher output level, where quantum
fluctuations in I,, should be negligible, and in-
serting a. variable optical attenuator (-30 dB) in
the output of L,, to produce the same post-attenu-
ator power output (and hence S/N conditions) in
the succeeding apparatus. Comparison of the
two measurements effectively determined the
quantum contribution.

The circled points in Fig. 2(b) show the mea-
sured white-noise level of G~( f), expressed as
equivalent linewidth b f&, versus oscillation lev-
el of I, The theoretical curve is the Schawlow-
Townes formula' taking into account the uncer-
tainty in cavity parameters for L,, but assuming
N, /(N, g,N, /g, ) =1.—The offset between theory
and experiment can be accounted for by assum-
ing N, /(N, g,N, /g, ) -=3, not unreasonable for this
particular laser system. The square data points
represent measurements of (b,y'(T)) at one fixed
value 7 = 167 nsec, again converted to equivalent
quantum linewidth. As also in our earlier work,
we are unable to resolve the factor of 2 differ-
ence between discriminator and phase-jitter re-
sults here„and must continue to attribute it to
experimental uncertainties or to some systemat-
ic error in one of the measurement techniques.
We discount the apparent rapid increa. se in n f&
below P = 2 x 10 W since in this region the beat-

note S/N decreases below 20 dB. At such low

power levels, fluctuations in the power stabiliza-
tion loop could result in an increase in observed
noise because of nonlinear power dependence
(1/P) of the quantum noise.

Our useful measurement range is uncomfort-
ably limited at present by the vanishing quantum
contribution at higher values of P a.nd by reduc-
tion of the heterodyne S/N at lower values of P.
However, we believe that the 1/P dependence ob-
served between P = 2 x10 ' W and P = 9x 10 ' W

most probably represents quantum phase fluctua-
tions in laser L, In future experiments more
detailed study should be possible by using a high-
gain infrared laser transition, reducing the cavi-
ty Q, increasing Afcav, and thus greatly enhanc-

ing the quantum noise contribution.
Note added in proof. —Just as this report was

completed we received the translation of a Rus-
sian Letters journal reporting very similar ob-
servations, 4 although at substantially higher pow-
er levels P and hence much lower values of sf&
(-0.1-1.0 Hz). Our only reservations concern-
ing the Russian results have to do with the non-
ideal discriminator characteristics mentioned
earlier, ' i.e., we find that the observed inherent
noise output from our real (nonideal) discrimina-
tor can have a flat spectrum that rises as -1/P
due simply to decree. sing S/N in the rf bandwidth

rather than to any real frequency fluctuations in

the beat signal. The results of Ref. 4 imply the

availability of a very nearly ideal rf discrimina-
tor a.t ~, =2mx8. 4 MHz.
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