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It is shown that when the Dirac theory is formulated in the formalism of the dynam-
ical group O(4, 2), there is no need to invoke the hole theory or the notion of backward
motion in time to describe antiparticles A. single irreducible representation of O(4, 2)
is used and the discrete operators I', C become inner automorphisms of the group.
The most general linear minimal parity-violating equation generalizing the Dirac equa-
tion is shown to lead to two possible distinct mass values.

It is clear that the Dirac equation goes beyond
the customary definition of an elementary parti-
cle as an irreducible representation of the Poin-
card group: One has to require in addition the
existence of a vector operator I"& in the repre-
sentation space which only happens if one takes
the direct sum of at least two finite-dimensional
representations of the Lorentz group. ' In the
usual interpretation of the Dirac equation, one
has then to deal with the negative energy states,
invoking the standard prescriptions of the hole
theory, 2 or the notion of particles moving back-
ward in time. '

However, if we go to the larger group O(4, 2),
containing the Lorentz group Q(3, 1), the parti-
cle-antiparticle system is described in one irre-
ducible representation, the vector operator I'&
exists in the representation space, and the sign
of the energy becomes a new internal quantum
number in the rest frame. Thus both particles
and antiparticles can be boosted to positive ener-
gies. Current conservation then implies equal
mass for both particles and antiparticles. Dis-
crete operations of parity and charge conjuga-
tion become now simple inner automorphisms of
the group whereas they are outside of the Lo-
rentz group. Thus a single-particle theory of
the electron-positron system is possible, the
general opinion at present being that a relativis-
tic theory must necessarily imply an infinite
number of particles.

The formalism that we use exactly parallels
recent work on the O(4, 2) theory of electromag-
netic interactions and the H atom, 4 and of hadron
properties. ' It is remarkable that the same dy-
namical group Q(4, 2) can be used to describe
the properties and interactions of such widely
different structures as leptons, the H atom, and
hadrons. Only the Casimir invariants of the
group distinguish these different structures.

The fundamental irreducible four -dimensional
representation of the O(4, 2) algebra isa given by
the following: L,& = , iy;y& (spin-), L;4= 2iy5y;

(the analog of Lenz vector), L;5=M; = —,'iy&yo

(pure Lorentz transformations), F& =
& y& (alge-

braic current operator), L«= -i~ysyc (the "tilt"),
and L«= -2y, . We use y~~+~y~=2g~y, the
metric (----++), y, = y,y,y2y„yf'= y5'= -1, 'yo~

=+1.
Quite generally, the rest-frame states in Q(4,

2) are labeled by three quantum numbers and

parity, Injm+), where n is the eigenvalue of L
j(j+1) the eigenvalue of L', and m that of L
In the above fundamental representation, even
I.s4 can be diagonalized together with LM, L',
and Ly2 In terms of these quantum numbers we
have the four basis states

1 1 1 1 1 1
I2, &, 2, +), 1-„2,——„+),

and clearly connects different eigenvalues of L56
given in (1).

Next, we define, as in the previous work on
O(4, 2),4 ' spinorial wave functions for states
with momentum P P = (m cosh], $m sinh/) by

Injm+, p) = e Injm+)
i( M

0
cosh-, $+ $ sinh2$ Injm+). (2)

The scalar vertex function connecting any two

where the parity operator for this representa-
tion is defined to be P=

&0 The first Casimir op-
erator has the value Q = L~yL = 15/4. The par-
abolic quantum numbers n„n„ i.e., the eigen-
values of , (L«+ L„)—,give in this case, unlike
the infinite-dimensional case, the same states:
Injm+)=- In,nsm+), n =n, +n, .

Charge conjugation is another inner automor-
phism,
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states is given by

S=g (n "j"m",p" In'j'm', p') = ~ (g)

and is the analog of u(p")u(p) in the usual formalism. The functions Z~&„are the basic quantities en-
tering into all higher order calculations and are given by [in the basis (1)]'

cosh —,
'

$ 0
0 cosh2$

(, sinh —,$ (g, + i(~) sinh2 $

($,-i)~) sinh2) —8, sinh-,'(

-$, sinh —,'$
($,-i(,-) sinh2 g

1-cosh-, $

0

-($, + i$,) sinh-,'$

$, sinh2$
0

-cosh2$

(4)

They are normalized at $ =0 to'

V, (0)-=(n'j'm'Injm)=(2n')6, .
n'n n'n

The vector vertex function is defined by

=g (n'j'm', P ' Ij Injm, P)
p, V '

p.
(6)

charge matrix e followed in the infinite multiplet
theory4»'': Take in Eq. (10), e= 1, but let the
current j& act on "physical states" In)=R 'In)
and determine R from Eq. (7), i,e., (nIj0In)=e„.

With these results the scattering and annihila-
tion vertices are given by

We require from ~ that the charge of each
state is correctly given and the equation of cur-
rent conservation is

(i2)
(n Ij In)=e, (7)

(p -p) "j =0,
p,

which becomes'

m, (n'Ij In, P)-m (n', -P Ij In)=0.

(8)

(9)

The most general parity-conserving current op-
erator can be written as

Vj =ey +i(ez/2m)o q .
p, tLV

(10)

or

for all states. Conversely, the requirement of
positive masses for all states implies that the
negative-n states must have negative charge,
hence the existence of antiparticles. There is
another equivalent procedure to the use of the
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The second term does not contribute to the charge
and is always conserved. In order to satisfy the
requirement (7) for the first term, we must take
e to be positive for the positive-n states and neg-
ative for the negative-n states. Note that in the
theory of infinite multiplets, like the H atom,
the coefficient e is in general a matrix. 4~' gee
have then from the second requirement (9) and (6)

(m, (2n ')2-m (2n)mj(n ' Inp) = 0,n' n

In the present case the second term is a linear
combination of y and 0»q~. Hence we are left
with two terms e~F&+ e3P&L46. In particular,
the current operator of the H atom has exactly
these two terms. The term e3P&L46 in the
present four-dimensional representation is
-P&y5 and does not conserve parity. Therefore
the Dirac equation is the most general four-com-
ponent parity-conserving equation with a mini-
mal current. However, in situations where pari-
ty is not conserved, the most general equation
is

(P a y -n m y + py -y) Ip, p) =0.p 2

3
(14)

We note that the equation of the H atom is exact-

respectively, and we recover the usual rules
of covariant perturbation theory and of crossing
symmetry. "

So far we have not written down the Dirac equa-
tion as such, but the above formalism and the re-
quirement of current conservation is equivalent
to the Dirac equation. Where we go beyond the
Dirac equation is in tne use of the irreducible
representation of O(4, 2) and thereby the intro-
duction of the new quantum number n."

The most general minimal linear conserved
current in O(4, 2) is'

j =e F +eP +eP L
1 p 2 p 3 p 46
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ly of this form, where, however, L~ is parity
conserving. In (14), In, P) are the so-called "tilt-
ed" states also occurring in H-atom and hadron
calculations (for covariance, the tilting opera-
tion is always done before boosting):

1

In, p=0)=e' ' 'In, p=0).

In such a theory the vertex function is given by
1

(n'I j Inp)= (n'le ' o o(e y -n I' y )
]. p, 3 p, 5

&h M 2eyoyo )&&e e l&g.

The mass spectrum can be obtained either from
Eq. (14), or from the current conservation re-
quirement (9), first by operating with e '~™
a,nd then with the inverse of (15), e 2 gyoyo. It
is interesting that one gets now two mass values;
for example, for P=O in (14) one finds

m2 (2(y 2) —l[~ 2 p (~ 4 4y2 ~ 2)1/2]
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Actually only the diagonal elements of 'U+„I are phys-
ical because of the conservation of total charge in the
S matrix. This can be taken into account by requiring
the invariance of the S matrix under the compact sub-
group O(2), rotation in the 56 plane, analog to the com-
pact subgroup O(3) for angular momentum.

Note that Eq. (5) is not the Hilbert-space norm of
the states, but the scalar u(0)u(0). Because the repre-
sentation in spin space is not unitary, D &D~; hence
these two things are different.

See Ref. 8 for charge conservation.
If we write an equivalent Dirac equation, it will

have the form [qy~P —Mo]$ =0, i.e. , the charged quan-
tum number occurring in the free-particle equation.
This is appropriate because it is an internal quantum
number of the free system in the present interpreta-
tion.
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Since the suggestion was made' that C invari-
ance might not hold for the electromagnetic in-
teraction, a number of attempts ' have been
made to find evidence for a C nonconservation in
the electromagnetic decay of the eta meson. To
date, there is no experimental evidence for the
existence of the C-nonconserving decay p- m'e+8

(Table I). Furthermore, although measurements
of the asymmetry in the Dalitz plot g- m+71

show disagreement (Table II), the most precise
of these' gives a null result. Similarly, the de-

cay g- ~+m z shows no charge asymmetry. " We
would like to consider whether these experimen-
tal results are compatible with an electromagnet-
ic C nonconservation of strength sufficient to ac-
count for the observed CI' nonconservation in
K,' decay. ' In doing so, we take special note of
the following considerations:

(1) The width for the decay q-yy as measured
experimentally" is an order of magnitude larger
than earlier theoretical estimates. "

(2) The decay q- m'e+e and the asymmetry in
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