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The K yields are shown as a function of lab
momentum in Fig. 1(b). The Tsai-WhitisM com-
puter program was used to calculate the E
flux coming from y decay under the assumptions
that

-At
do (yp —pp)/dt ~ e

withA=3 or 7 GeV ', a total y cross section
of 1.0 pb, p helicity =+1, and (cp-K K )/(p- all) = 0.48; the results of the program are
also shown in Fig. 1(b).

The y cannot contribute to the K yield at 10
BeV/c and the yield at this momentum is a mea-
sure of the background from other processes
such as the Drell mechanism, "F* decay, etc.
The yield from these background processes
might be expected to increase as the momen-
tum is lowered. Indeed, a straight line can
be drawn through the points and the data do not
show a need for a peak in the distribution cor-
responding to p production. If, however, we
assume that the K yield from other process-
es at 8 GeV/c is just that given by the point
at 10 GeV/c, a total yp -pp cross section of
0.38+ 0.18 p.b is obtained if the p's are produced
with an e 7t distribution; this becomes 0.52

+0.25 p, b for e ~. If the K yield from the
other processes falls off rapidly going from
10 to 8 GeV/c, then an upper limit for yp -cpp
can be obtained by assuming that all the K
yield at 8 GeV/e comes from qr decay; this dras-
tic assumption results in upper limits (95/o con-
fidence) of 1.0 and 1.4 p, b for e 7f and e
distributions, respectively.

Vfe wish to thank Dr. J. Rees for valuable

contributions during the initial operation of the
20-GeV spectrometer and Dr. B. Gittelman for
assistance in the data taking.
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A spherically symmetric solution of the Einstein equations is presented that coincides
with the exterior (x& 2~) Schwarzschild solution, but where the Schwarzschild "sphere"
becomes a point singularity. The possible relevance of this solution to the question of
gravitational collapse is discussed.

Recently, Israel' presented a proof of an inter-
esting theorem: Among all static, asymptotical-
ly flat, vacuum solutions of the Einstein equa-
tions with closed simply connected equipoten-
tial surfaces, g«= const, Schwarzschild's solu-
tion is the only one that has a nonsingular event
horizon g~ = 0. It has been hypothesized by both

Israel and Penrose' that this result has an im-
portant bearing on the question of asymmetric
gravitational co11apse —if a nonsingular event ho-
rizon is to develop during the collapse of a body
with mass and some asymmetry, the body must
radiate away all its higher multipole moments.
Once this has happened, the Penrose theorem be-
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comes operable and thus continued collapse is in-
evitable. It is necessary that the body lose its
asymmetry for this to happen, as otherwise the
Israel theorem prohibits the development of
trapped surfaces due to the formation of singu-
larities at the event horizon. These considera-
tions, as well as our conclusions, depend, of
course, on the assumption that time-dependent
solutions do not introduce qualitatively different
features.

We wish to present here an extension of Isra-
el's idea of singular event horizons to include
the Schwarzschild solution as well as the asym-

metric metrics. If the Schwarzschild metric
can be considered to have a singular event hori-
zon, then collapse through it becomes impossi-
ble, thus obviating the Penrose theorem.

We shall present a metric from which, by a
limiting procedure, the exterior Schwarzschild
metric is obtained but where the event horizon
(the usual r = 2m) is not only singular but is also
a point rather than a sphere.

The metric we first construct is the spherical-
ly symmetric solution of the coupled gravitation-
al and zero-rest-mass scalar fields with field
equations

CV

p~' p~, p, ~ p~, ~,P

The spherically symmetric solution can be explicitly written as a function of two parameters A and xo
= 2m, with R as a radial coordinate, as

2R+«p+1ds'= —
' dR2+r'(d tP+ sin'6dq2)- " ' " — dt' (1)

2R —~,(p —1) 2R+r, (p+ 1)

A 2R —so(p -1)
2R+~.(p+1) '

with

= ~[2R+ro(p+ 1)]2, 1+ 1/p

[2R- .(p-l)], (3)
1-1/p

p
= (1 + 4yg2/~ 2)l/2 & 1

The analysis rests on the meaning of r2 (the
surface area of a sphere of constant R is given
by 4m 2 and hence r2 = 0 is a point) and its depen-
dence on R. Note that as R goes from its mini-
mum value of ,r, (p 1)—to~,—x' goes from 0 to ~.
At the minimum value of R, it is easily calculat-
ed that the scalar field cp [Eq. (2)], the Ricci ten-
sor, and the curvature scalar all become singu-
lar. Thus R = ,'r, (p —1) (o—r alternatively r =0) is
a singular point in the space no matter how

small the coupling constant K becomes. The
problem now is to find the relation between x
and R as ~-0, or as p. —1. Ne shal. l see that an
anomaly develops here and that the limit is not
unique.

The difficulty lies in the second bracket in Eq.
(3), namely J= [2R x,( pl)] —/p For R &2m,.
x (p, -l), the limit as p, —1 of this term is clear-
ly 1; however for R = 2ro(p1), the limi, —t is now

0. The function J(R, p, ) is indeterminate at R = p.

J(R,p, )

FIG. 1. Curves with smaller p have their intercepts
with the R axis closer to the J axis.

(2)
-1=0; its value depends on how the limit is ap-
proached. The function J(R, 1) is 1 for R &0 but
undefined for R =0. If it is taken to be one for
all values of R, the resulting metric is the
Schwarzschild solution, with R = 0 corresponding
to x = 2m [This val.ue arises from the first
bracket in Eq. (3).] However, since J(R, p, ) for
all p. &1 has a zero at R= ,r, (p —1)-(the zero get-
ting closer to R = 0 a,s p. - 1), it appears that a
more reasonable limit (at least from the pertur-
bation point of view) is to treat J(R, 1) as 1 for
R & 0, and as 0 for R = 0. (See Fig. 1.) We see
that from this latter viewpoint we have x=0, in-
stead of x=2m, at R=0. In other words, the
space suddenly collapses from a radius slightly
greater than x = 2m to zero.

We thus have a spa, ce that coincides with the
exterior Schwarzschild space but where the
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Schwarzschild "sphere" x = 2m now becomes a
singular point.

We had hoped to show that all the Weyl-Levi-
Civita axially symmetric solutions correspond-
ing to a point singularity with mass and higher
multipole moments would have the same limit as
above when the higher moments vanished. Unfor-
tunately, to our knowledge, all the known axially
symmetry solutions do not have point singulari-
ties. (They all appear to have unusual geometri-
cal properties near their singular event horizons.
The two-dimensional surface area surrounding
the singularity appears to tend to infinity. )

Hence the limiting case tends neither to our ver-
sion of the Schwarzschild metric (called the trun=
cated Schwarzschild metric) nor to the standard
version. We nevertheless strongly feel that our
conjecture is true, namely that all asymptotical-
ly flat, static solutions with a point singularity,
and which possess mass and some asymmetry,
do approach the truncated Schwarzschild solu-
tion as the asymmetry vanishes.

Once this solution is admitted as a spherically
symmetric solution of the Einstein equations,
then mathematically there is no a priori reason
to choose between it and the standard Schwarzs-
child metric to represent physical models. How-

ever, there appears to be a good physical rea-
son to choose the truncated solution; namely, it
is apparently (if our conjecture is correct) much
closer to the perturbed solutions than is the usu-
al form. More specifically, static perturbation
expansions of asymmetric solutions off the usual

Schwarzschild metric do not approximate (close
to the event horizon) the exact solutions they are
meant to represent. However, it appears as if
the perturbations off the truncated solution would
lead to good approximations to exact point-singu-
larity solutions if they could be found. (We
would like to point out parenthetically that this
is a good illustration of the dangers of indiscrim-
inate use of perturbation calculations: Here the
perturbations do not converge to any exact solu-
tion. It also emphasizes the importance of look-
ing for solutions corresponding to point muiti-
poles. )

It is clear that if our truncated Schwarzschild
metric is to be considered as the physical solu-
tion corresponding to a, spherically symmetric
point mass, then the entire question of gravita-
tional collapse beyond the Schwarzschild radius
becomes meaningless. This point of view also
obviates all discussion of the topological ques-
tions of the Schwarzschild interior, which for
many people has always been disturbing.

We wish also to point out that Bels has come to
a similar conclusion concerning the Schwarzs-
child radius by totally different methods.
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The identification of the divergence of the axi-
al-vector field (or current) as the pion field has
proven to be a useful and successful concept in
particle physics. In this note, we formulate the
notion of partially conserved axial-vector cur-
rents in a canonical Lagrangian formalism. It
is shown that the Kawarabayashi-Suzuki-Riazud-
din-Fayyazuddin (KSRF)' sum rule is an imme-
diate and simple consequence of Weinberg's'
first sum rule and of the natural assumption that
the Lagrangian is a functional of the axial-vec-
tor field.

The free fields (interaction picture fields). —

We consider an axial-vector field p~ that de-
scribes both spin-1 particles of mass m and
spin-0 particles of mass p. . In the absence of in-
teractions we have explicitly

2 A(-v)& v

( rn )(g -8 9 /p—)p =p.2 p, v p, v

Thus the free axial-vector and pseudoscalar me-


