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generates the form factor as an eigenfunction of
the Saxon-Woods potential Ug D, fails to give an
accurate form factor for the f», case.

Figure 2 shows the result of the calculation of
the pseudopotential, U»sp(r), for the P»2 form
factor. The potential Uf(r), for j=-,, is also
shown. On performing the conventional "well-
depth" calculation of the form factor, it is found

that Ugr~, for this case, has a depth V, = -56
MeV. From Fig. 2 it is seen that, aside from a
"pole, ""U»,+(x) starts with a depth of about 3
MeV near the origin and tapers off as the radial
distance increases. Since U», c(r) is a Saxon-
Woods potential of depth 53.3 MeV, the addition
of U»,+(r) to U», c(x) would give roughly a. Saxon-
Woods potential of depth =56.3 MeV. It is, there-
fore, understandable why the conventional "well-
depth" prescription succeeds in giving a good
farm factor for the P», case.

The calculation of U„,+(r), for the P„, form
factor, gave results similar to those discussed
for the P„, case.
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The asymmetric mass yield distribution in spontaneous fission is simply related to
the intrinsic nuclear structure and to the nuclear spin-orbit coupling.

The phenomenon of nuclear fission is the on-

ly well-known one in which a system of many

strongly interacting particles undergoes a ma-
jor change involving all of its constituents. '
One of the most striking features of spontane-
ous fission (or indeed of fission induced by low-
and medium-energy projectiles) is the pronounced
asymmetry in the mass yield distribution. The
fissioning nucleus separates almost always
into two unequal parts, with one approximate-
ly 1.5 times heavier than the other. Attempts
to explain this asymmetry have included a va-
riety of elaborate approaches. ~ In this paper

we propose a new explanation of the mass asym-
metry, based on elementary principles and

on very simple, natural assumptions.
Basic assumptions. —The nuclear system and

the processes which it undergoes are general-
ly determined by a many-body Hamiltonian,
containing (at lea.st) one-body and two-body
operators:

The process of fission, in particular, is described
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by a time-dependent solution of this problem.
The actual solution of the Schrodinger equation
(assuming the Hamiltonian known) is impossi-
ble, and approximations need to be made. The
liquid-drop model (LDM) describes the nucle-
us as a homogeneous, nonviscous, incompres-
sible, charged liquid, which is subjected to
an irrotational hydrodynamical flow. The sur-
face which determines the instantaneous shape
of the nucleus plays the role of dynamical vari-
able, '&4 and the nuclear potential energy is pro-
portional to the area of this surface. In the
present treatment, this surface (or the over-
all spatial nuclear shape) is still of primary
significance, but in addition to it we consider
the existence of an intrinsic structure, which
reflects the internal nucleonic motion, and rep-
resents the individual particles degrees of free-
dom. The exact nature of this intrinsic struc-
ture, and its relation to the Hamiltonian (1)
and the nuclear shape, is a question of great
complexity. We must make simplifying assump-
tions, based on physical considerations, to
provide for a workable model. We assume that
the intrinsic state describes a system of inde-
pendent particles moving in a common poten-
tial. This is motivated by the observation that,
reflecting the exclusion principle, nucleons
have a long mean free path in nuclear matter.
This intrinsic determinantal state is a time-
dependent solution of a self-consistency equa-
tion, giving a stationary expectation value to
the Hamiltonian (1), reproducing the nuclear
density of the instantaneous shape, and vary-
ing continuously with time. Of these assump-
tions, the only one that we shall actually exploit
here' is the continuity of the intrinsic structure.

The common average potential V(s) in which
the nucleons move, and which represents their
mutual interaction, is regarded as a simple
function of the nuclear shape s. It is uniquely
defined by the shape s, by assuming, for ex-
ample, standard depth and surface diffuseness.
In addition to the single-particle potential, we
must specify the orbits which are actually oc-
cupied. This is determined by the assumption
of continuity: If for a given shape s a, set (yf(s);
i = 1, ~ ~, Aj of states are occupied, then under
a variatione 5s, the states (y;(s + 5s); i = 1. . .Aj
will be occupied, where

y. (s) = lim y. (s+ 5s).
E E

5s =0

If y (s) belongs to a nondegenerate eigenvalue

of V(s), the continuity of the eigenvalues is suf-
ficient to determine the corresponding occupied
state. The operative difference between the
LDM and the present approach now becomes
apparent. It can be shown' that the LDM nucle-
ar potential energy is almost exactly reproduced
by assuming that the lowest single-particle states
are invariably occupied. In the present approach
the level occupation is determined by the ini-
tial configuration of the system, regardless
of the single-particle energies. Thus, if the
system has initially the shape so, with A nucle-
ons occupying the (presumably lowest) levels

(sa), ~ ~ ~, y (so), than for any shape s, it
should be described as having nucleons occu-
pying the (not necessarily lowest) levels y; (s),2g
~ ~ ~, y. (s), where y;(s) is continuously connect-
ed to X (so). This single-particle rearrange-
ment primarily modifies the LDM nuclear po-
tential energy of each shape s, by adding to
it a positive increment bE(s). The tradition-
al LDM saddle-point shape is symmetric under

Lz and R (rotation around the fission direction,
and reflection through a plane perpendicular
to it). For these shapes the rearrangement
basically involves the transfer of particles from
antisymmetric states of low m to symmetric
states of high rn, and generally fewer modes.
Detailed quantitative studies' show that because
of the different nature of the states, bE(s) is
a strongly decreasing function of asymmetry
in the shape. In fact, the variation of bE(s)
as a function of shape asymmetry is consider-
ably larger than that of the difference between
the Coulomb energy and the unmodified LDM
nuclear potential energy. Thus, the modified
energy surface has an asymmetric saddle-point
shape. The dynamic solution of the modified
problem is as complex as that of the unmodi-
fied one. However, we may investigate the es-
sential features of such a solution through not-
ing that the system will ideally prefer shapes
(and paths) for which bE(s) is minimal. To
do this we consider the fission limit, in which
the potential approaches asymptotically two
separate, uncoupled regions, and the single-
particle states are described as pairs of strict-
ly independent functions (p u', p'2'). Clearly,
for (p '", y'z') to be an eigenstate of the combined
potential, jo'" and p'2', individually, must be
eigenstates of the corresponding separate po-
tenti. als, belonging to the same eigenvalues.
Since such a degeneracy is an exceptional oc-
currence, we see that particles become gen—
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erally localized completely in one of the frag-
ments, although which one they will localize
in may depend on the way the limit is approached.
Consider, in particular, paths which maintain
throughout the Rz symmetry. (This is done

purely for reasons of convenience in mathema-
tical analysis. ) An initial independent-parti-
cle configuration with A+ lowest states with

z~ =+I, and A (A «A~, say) lowest states
with p = —I (consistent with other quantum num-
bers), will become

A A+
0= If (v, -v,.) g (~, w,.).

i =1 i=1

The pair of states (y&, —y&), (y&, y&) are equiv-
alent, as can be seen by a simpl. e transforma-
tion, to (cp~, 0), (O, cp~); namely, two particles
localized in the two different fragments. This
applies to the lowest A pairs. Upon expand-
ing the remaining A+-A states, we see that
they do not correspond to any definite localiza-
tion (or, equivalently, mass division), but to
a linear combination of terms, in each of which
N particles are localized in one of the fragments
and A+ —A —N in the other, with A «N &A+.
The single-parti. cle energies in each of the frag-
ments go down (up) when its spatial dimensions
increase (decrease). It is easy to see that DF(s)
is smallest, when all A+ —A are localized in
one fragment, and the over-a, ll sizes of the frag-
ments are adjusted to reproduce in both the
same standard density. With the help of this
argument we can summarize the dynamic con-
tents of the modified system, by the following
ideal, strikingly simple rule: Under the assump-
tion of continuous evolution of independent nu-
cleonic wave functions, a system having in its
ground state A+ nucleons in eigenstates with

yz =+1 and A with y = -1 will divide into two

systems, moving apart along the z axis, con-
taining A+ and A nucleons, respectively. In

particular, we may draw immediate conclusions
concerning the mass yield distribution in spon-
taneous fission under various hypothetical as-
symptions.

(A) Initial spherical potential. —The spatial
nucleonic single-particle wave functions in a
spherical potential are cha, racterized by the
quantum numbers n, l, rn:

(r)P (cos 8)e
l

n/rn n/ m

P Lpolt'
where AB and AL are the mass numbers of the
heavy and light fragments, respectively.

(C) Effect of nucleonic spin. —It is well estab-
lished that in nuclei there is a strong spin-or-
bit coupling. The effect of this coupling is to
make the ha, lf-integer j =1+s a good quantum
number, along with the half-integer mj (rath-
er than m and ms). An eigenstate injlm&) is

t l 1 ~

ljnm. ) =
2 2 ~~ — nl ~ 2 2

l
m+- LX-2 m. nlrb. +2

.7

where gnf m +& are the sPatial functions of Eq.
(4); X+~, spinors; and the bracketed symbols,2'
Clebsch-Gordan coefficients The sta.tes Intj m&),
therefore, are not inva, riant under R . Rather,
they are a combination of states with yz = +1

Under Rz, y- -y and 0- —L9. Hence

l -rn=r 0 =(-I)
z n/m z n/rn n/m

Since l is an integer, there is an odd number,
2l+ 1, of states in an l rnultiplet. For any /,
/+ 1 of these states have y =+1 and only / have

y~
= -1. Therefore there are always more states

with yz =+1 than there are with yz = —1, the dif-
ference being equal to the number of occupied
l multiplets in the initial system.

(B) Initial deformed potential, symmetric
under R .—In a deformed initial potential, l
is not a good quantum number, and the deter-
mination of A+ —A (which determines the mass-
number difference between the fragments) is
not as straightforward as in the spherical case.
It is easy to see that, because of the difference
in boundary conditions for symmetr ic and an-
tisymmetric states on the x-y symmetry plane,
A+-A is a monotonically increasing function
of the nuclear cross section on this plane. Hence,
the asymmetry in the mass yield distribution
in spontaneous fission is a direct measure of
both the sign and the magnitude of the intrinsic
nuclear ground-state deformation. Qualitative-
ly, for any given nucleus with different hypo-
thetical deformations,

-~ ) —AP L oblate H L spherical



VOLUME 20, +UMBER 16 PHYSICAL REVIEW LETTERS 1 $ APRIL 1968

and y = -1, with probabilities

(y~)
(Bl/PB. ) m. T p

IO

The initial nuclear ground state, inasmuch as
it is described as a system of independent par-
ticles, is therefore a linear combination of
states with different values of A+ and A . The
total probability for a. certain A+ (and the com-
plement A ) is simply

P(A, A ) =
g C (+&

A+

(o. l ~ ~ o. ) A. =1
A+

(Pl' ' 'PA )

0.01—

x II C ' ', (9)

where the summation extends over all partitions
of the A-nucleon system into an A+- and an
A -nucleon subsystems. Clearly, therefore,
the effect of the spin-orbit coupling is to intro-
duce an intrinsic width into the mass distribu-
tion. Applying the central limit theorem to this
distribution, we rewrite it as

P(A, A )= „exp — (A -(A ))', (10)

where
A

) — P ( (2&

A
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FIG. 1. The theoretical mass yield distribution for
the spontaneous fission of Cf, and the experimental
data (not corrected for prompt neutron emission).
The circles and triangles represent light and heavy
fragments, respectively. The nucleus is assumed to
be deformed, with a major-to-minor axis ratio of 1.4
(representing a prolate deformation and a positive
quadrupole moment). This results in a shift (towards
symmetry) of the peak of the mass distribution by ap-
proximately 5 mass units relative to the spherical case.

and
A

(+&C ( —&

A 1
(12)

I~

+exp —2~(AP-8 ))2 . (»)

As a preliminary example we give in Fig. 1
the theoretical and experimental situation in
the spontaneous fission of Cf2'2, where the fit
is essentially made with no free parameters.

For spontaneous fission, the relative abundance
of a fragment with mass number A& is propor-
tional to P(AP, A —AP)+P(A —AP, AP). Normal-
izing the distribution of AP to 200%, we have,
finally,

1 '" 1

Obviously, the treatment presented above
calls for various modifications, in particular
when fission through excited states is to be con-
sidered. Nevertheless, it is important to note
that the qualitative approach is, in fact, suf-
ficient for understanding the basic features of
this phenomenon.
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NUCLEAR STRUCTURE OF Ca" AND ELASTIC SCATTERING OF 750-MeV ELECTRONS
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It is shown that inclusion of the short-range nucleon-nucleon correlations in the usual
sheQ-model description can provide adequate agreement with the known results of the
electron elastic-scattering cross section and can make some interesting predictions.

Recently Bellicard et al. ' published some ex-
cellent experimental data on the elastic scatter-
ing of 750-MeV electrons from calcium isotopes.
It was found that a charge distribution p, (r) ob-
tained by analyzing the scattering data at 250
MeV was quite inadequate at 750 MeV to explain
the experimental results beyond scattering angle
0 greater than 35', i.e., in the region of large
momentum transfer. An oscillating function,
b,p, (r), had to be added to the charge distribu-
tion p, (r) to obtain a good fit at 750 MeV. We
suggest in this note that such a modulating fac-
tor arises from the presence of short-range nu-
cleon-nucleon correlations in the Ca ground-
state wave function.

The usual shell-model wave function of a
closed-shell nucleus is a Slater determinant of
single-particle functions determined in a central
potential well. In the case of Ca', the shell-
model wave function is taken as the closed 1s,
1p, 2s, and 11 shells. Such a wave function has
few high-momentum components but enough low-
momentum components to explain experimental
results that involve momenta p &pF, the Fermi
momentum. For example, this wave function
can provide an adequate explanation for the elas-
tic electron scattering at 250 MeV since at this
energy only low-momentum components are be-
ing studied. However, a,t 750-MeV electron en-
ergy and 8&35, high-momentum components
are important and the usual shell model is ex-
pected to break down. High-momentum compo-
nents can arise from the strong short-range re-
pulsion and the attractive part just outside the
repulsive core in the nucleon-nucleon potential. '
A radical approach to modify the wave function
would be to do a Brueckner-type calculation for
this finite nuclear system. Since such an ap-
proach is extremely difficult and has many un-

Explicitly f(r~&) is chosen to be

(2)

where P is a parameter to be determined. The
elastic-scattering cross section for electrons of
energy F. on a nucleus with charge Z in the Born
approximation is well known to have the form'

dc Ze' cos'(8/2)
~ F(q') P

dA 4E' ins(84/2) I + (2E/M) sin (8/2)' (3)

where 6I is the scattering angle, M is the mass
of the target nucleus, and 5 =c = 1. F(q') is the
charge form factor of the nucleus and is given
as

protons
+(q') =—

i g~ P exp(iq. r.)gd~.g6 j
Because of the complexity of p, this expression
for E(q2) can be evaluated exactly only for sim-
ple systems like He'. But for Ca~', we use the
cluster expansion as given by Iwamoto and Ya-
mada. ' Here only one- and two-particle cluster

certainties, we choose the phenomenological
method suggested by Jastrow. '

The modified wave function, g, for the ground
state of Ca' is chosen to have the form

$(rl ~ ~ r40) = N Zf y~(y~) II f(r . .),
i&j

where y&(z&) are the harmonic-oscillator-type
single-particle wave functions and f(rz&) is the
Jastrow-type factor with the properties that

lim f(r . .) =1 and lim f(x. .) = 0.
v vgoo~W -0

U v
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