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EXTENSION OF THE LOW SOFT-PHOTON THEOREM*
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The Low theorem is applied to the radiative cross section for unpolarized particles,
It is shown that the first two terms of an expansion in the photon energy depend on the
unpolarized, nonradiative cross section only.

Low' has shown that the first two terms of
a radiative cross section, expanded in powers
of the photon energy k, can be exactly deter-
mined given the amplitude for the nonradiative
process. Specifically, when the cross section
is expanded in powers of the energy loss k,

o = o'0/k + 0'~ + k (z2 + ~ '

a unique value for

co= lim ka
k-0

d(ko)
llm

dkk-0
can be obtained from knowledge of the nonrad-
iative amplitude.

Our extension applies to the cross section
when the charged particles have spin. The terms
o, and o, for the cross section summed and
averaged over the spins of those particles bear-
ing charge or magnetic moment are uniquely
determined by the nonradiative cross section
summed and averaged over the spins of the
same particles. This statement is obvious for
o„which is directly proportional to the non-
radiative cross section in any case. The term
o;, however, contains interference terms be-
tween the elastic amplitude and its derivative
with respect to physical variables; so it is ap-
propriate to inquire whether or not phase in-
formation can be obtained from measurement
of 0, . We will show that the interference be-
tween electric and magnetic terms, which 0,
also contains, combines with the above to pro-
duce the result that o, depends only on the de-
rivatives of the unpolarized cross section.

Low's result depends on the fact that the ra-
diative amplitude contains contributions from
two types of terms: terms in which the photon
is radiated from an external line, or, equiv-
alently, terms with a pole in the variable (P
-k)', where P is the momentum of any particle,
and terms in which the photon is radiated from

an internal line, having no poles of this type
(see Fig. 1). These pole terms are responsi-
ble for infrared divergence [O(1/k) behavior],
while the nonpole terms are finite at zero pho-
ton energy.

The residue of the pole terms, which contri-
bute to o'„ factors into the product of the phys-
ical nonradiative amplitude and the sum of the
amplitudes for electric radiation of all the charged
particles, a result that can be obtained clas-
sically. The next term in an expansion of the
amplitude would involve unphysical off-mass-
shell contributions from both the scattering
and the photon emission, but the result of Low
is that gauge invariance requires these to van-
ish. We now present our formulation of the
Low thorem and illustrate this point.

We denote the radiative amplitude by T&(e,
k; ~ ~ ~ ) which we divide into internal and exter-
nal parts T =T x +T in as discussed above.

.y. y . y
The nonradiative amplitude will be denoted by
T(~ ~ ~ ), where ~ ~ ~ represents the momenta and
polarizations of the particles.

The O(k') terms are of three types: (1) k-
independent terms; (2) pole terms of the gen-
eral form (e P~/k. P~)k&M~i", where M~ i" is
k independent; and (3) explicitly gauge-invari-
ant pole terms which may be written in the form
~&k,P~ N~~'/k P~, where Kg&' is k indepen-
dent and k&k&Q Nzi""/k Pz-—0. The pole terms
come only from T, while the k-indepen-9

dent terms may come from either T or
2 . y

T " . Adler and Dothan' have pointed out thaty
the k-independent terms are completely deter-

(b)

FIG. 1. Radiative-amplitude diagrams. (a) Pole
erm. (b) Nonpole term.
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mined by the gauge-invariance requirement
T (k, k; ~ ~ ~ ) =0, the sum of the k-independent
terms being given by

(2)e May. a

Now consider T for scalar particles only'.
y

Here Qa is the charge of the ath particle, and

all particles except the photon are considered
incoming, so that gaPa =k. We now define
a procedure for extrapolation from a T with

a physically realizable set of momenta (Pa')
such that gaP ' = 0 and P ' =M ', to T's of
the form given in Eq. (3), where one momen-

tum is unphysical, and the rest the same as
in T . Let P'(k) =Pa-$a(k). Then the vectors

y
$ must have the properties pea(k) =k, pa ~ $a
= 0, )a(0) = 0, (B)a/Bk&)k 0 finite or zero.

ext a
T (ek; ~ ~ )= Q T(" P -k ") (3)

y
' ' ~ akp a

a a

Then we can define the expansion

T( p k I ~ ~ )

=T(p')++$~
B

T(P)
pP

B

T (P),+ o(k'). (4)
BP P =P'

The prescription then is that T is expressed
in terms of the momenta Pa which are differ-
entiated as independent variables, then eval-
uated with the momenta Pa'. It is possible for
the $'s to be defined so that scalar variables
are the same to first order in k whether ex-
pressed in terms of P or P', so for scalar am-
plitudes at least, the second term in Eq. (4)
can be neglected. Thus the choice of variables
to an extent determines the extrapolation, as
well as the form that the Low theorem takes. '
Substituting Eq. (4) into Eq. (3) and using the
expression (2) to determine the k-independent
terms, we have

eip — B E' Ip 8

T (» ")=) Q
' T(p) ) ~ T(p) -) Q 'k.

a a a — a a

For convenience in the following, we will define the differential operator

—e ~ — T(p').
a—

a
a k P BP BPa a a

Then the property k Da(k) =0 and charge conservation expressed as PQa =0 imply the required
gauge-invariance property T (k, k, ~ ~ ) =0. The properties p&$& ~ ( B/Bpb)p '=0 and D (k)p '=0 show
that derivatives of T(~ ~ ~ ) with respect to masses do not contribute.

When spin is involved, we must include magnetic terms O(k') from the photon vertex. We should
also verify that T, which is now a sum of invariants involving polarization tensors or spinors and
momenta multiplied by scalar functions, involves only the invariants present in the physical nonra-
diative process. This is done by splitting T into physical and nonphysical parts [by(P +m)/2m pro-
jection operators in the spin-& case] and finding that the only O(k ) contribution from the unphysical
part of T&ex is independent of k, and thus included in the expression (2).

We demonstrate our result by considering the interference of the O(k') term for a Dirac particle
with the total O(1/k) contribution and summing over the spins of the Dirac particle. If it has momen-
tum p and charge Q and we define v'(p)u(p) =T(p), then the Low theorem, neglecting O(k ) contribu-
tions from the other charged particles for the moment, takes the form

8

(~, k;P, " )=) Q ~(p')+h —~(p') &(P)
y

' ' ' ak P BPa a

~(p) (QA'-~(1+ m) V, Nl)&(p)-Qe D(k) ~(p')&(P)+ o(k),
2k p

where 4m' is the anomalous magnetic moment. Let A=gaQae Pa/k Pa and &=y,E . Then, P»-
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vided that & is real,

g ~T ~'=A' ~(p')(P'+m)~(p')+~(p')(P'+m)$ F—(p')+ 5 —&(p') (P'+m)~(p')
spin

—QA K(p')(p'+m)e ~ D(k)7(p')+[a D(k)K(p')](p+m)E(p')

(, (P+m)g'g+P'g(P'+m) —(,) (,)2k p
(6)

The terms from the anomalous magnetic moment have cancelled. Now we observe that

(p'+m)@+$g(p'+m) e p
2k ~ p kp

Inserting Eq. (7) in Eq. (6) and replacing (P+m) by (P'+m) using the relation

(P" +m) = (P'+m)-( ~—(P'+m) I

8

8P P=P
we obtain

Q 1T V=A' r(p')(p'+m)r(p')+(
8

r(p')(p" +m)r(p') QAe D(k)-r(p')(P" +m)r(p')+O(k').
spin

(8)

(10)

Now, since
tT I'

spins
depends only on scalar invariants, we may, as we discussed before, define the $'s so that the Qb
x(b ~ (8/Bpb) term vanishes. In that case we obtain the fina. l form

Thus the nonradiative amplitude only enters in its unpolarized form. Equation (7), which is funda-
mental to this result, is essentially a relation involving the vertex function and propagator to low-
est order in photon energy. The analogous relation for vector particles also holds, and we conjec-
ture that it is true for any spin.

Since the result, Eq. (9), was derived independently of the other spins, we may sum them also,
obtaining

IT I =A'(1+) k ~ r ITI —AQQ s ~ D (k) Q ITI .

spins b b spins b spins

E ~p e'p
IT (e, k;p)I'=) Q ) Q —e D (k) Z tT(p')t'.

— spins

In conclusion, we have shown that, within the

photon energy range for which the Low theorem
is useful, it is not possible to obtain any more
information about a nonradiative process by

studying the behavior of the unpolarized radi-
ative process. Conversely, the Low contribu-
tions to an unpolarized radiative process can

be deduced from the nonradiative unpolarized
cross section alone.
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3The point is that the variables p' and p are not and

cannot be the same to O(k). Thus the point at which 00
is evaluated in (1) is not unambiguously specified. A

change in the choice of the p' induces an 0(k ) change
in Op/k, this change being compensated by a corre-
sponding change in a.&. When, as is the case with un-
polarized cross sections, the function can be fully de-
fined in terms of scalar invariants, the same values of
these invariants can be used for radiative and nonradi-
ative process. Note, however, that even in this case
changes in the choice of scalar invariants change 0.

&,

with compensating changes in the 0(k ) part of oQ/k.


