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Beginning with Chew and Mandelstam, '~' many authors have studied once-subtracted dispersion
relations (D.R.'s) for the n vp-artial-wave amplitudes. Unfortunately, the requisite integrals con-
verge so slowly that the treatment of distant singularities is highly problematic. In this paper, we
alleviate the problems associated with the distant singularities by subtracting each D.R. either twice
or / times, whichever is greater. We present a method for approximately solving the resulting D.R. s
when the S-wave scattering lengths al are given. We then use the al predicted by Weinberg' and by
Schwinger' to calculate S-wave phase shifts for Ec m up to 900 MeV. Unlike Fulco and Wong' and
Brown and Goble, ' we obtain solutions which agree with the values reported by Walker et al. '

Our conventions include m~ =8 =c =1, v = —,S-1; we normalize the amplitudes AI(v, cos6) such that
A(l)I(v) =(1+1/v)2 exp(i51I) sinhil. Bose symmetry implies that even (odd) l contribute only for even
(odd) I.

We assume that every A(l)I is a real analytic function of v except for cuts from -~to -1 and from
0 to +~. Two subtractions are presumed to ensure rapid convergence for the dispersion integrals.
Noting that A(0)I(0) =aI, we write

ReA (v) =a +(O)I
I Vp

A (v) a v(v v) ~ ImA (v')(0)I (0)I ,
0 I 0

V+ P dv' —,
v v'(v'-v, )(v'-v)' (la,)

(1)I A (v, ) v(v —v, ) d, ImA (v')(1)I „(1)I
v, n —~ v'(v' v)(v—' v)'- (lb)

(2)I v ,ImA (v')(2)I,
v "(v'-v) ' (1c)

Since A ) (v) vanishes like v as v-0, we can subtract the D.R. s for all higher partial waves l &2
times at v =0 without introducing any more constants.

As usual, we approximate the amplitudes AI(v, cos9) with some number N of parti 1 waves. We
then use crossing symmetry together with the I egendre series to express each ImA (v). for v & -1lI
in terms of all the ImA(l ) (v') with v' ~ 0.'~' Under these approximations, the D.R.'s give each
ReA(l) (v) as an explicit function of subtraction constants and all the ImA(l )I (v') with v' ~ 0. Unitar-
ity implies another explicit relation between ReA(l)I and ImA(l)I, namely,

1 lI
ReA (v) = jlmA (v) [(I + I/v) ' -ImA (v) ])'. (2)

Equation (2) is exact from the elastic threshold at v = 0 up to the first inelastic threshold at v = 3 (2v
—4w), and experience with pion-nucleon scattering suggests that it is approximately valid up to v -10.

We specify the subtraction point v, to be v Isympt 3 Then crossing symmetry implies the re-
lations'

—,'A'(v„0) = —,'A'(v„0) =- -x, (3a)

]. Bg Bg B A
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There is a total of five subtraction constants in the D.R.'s (1), but the crossing relations (3) enable
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us to express all five constants in terms of
the ay and integrals which are presumed to con-
verge rapidly. Thus, when the aj are known,
Eqs. (1)-(3) constitute 3+N simultaneous equa-
tions for the three unknown subtraction constants
and the N functions ImA(I)f(v), 0 & v &10. To
solve these equations, we shall represent each
ImA(f)f(v) by a multiparameter trial function
F(I) (v;c ( )I) which is a linear function of some
number n(f)f of parameters c (I)f. (For exam-
pie, we might use

(0)f
(0)z —,

'" (0)f (q-I)=v c. v

j=l
for 0 & v &A, a cutoff. ) Then every dispersion
integral becomes a linear function of the param-
eters c&(f)f, wherein the coefficients of the c&(f)f
are simply integrals of known functions. For
given values of the ay, it is then straightfor-
ward to compute values for the subtraction con-
stants and the c ( )I such that the crossing re-
lations (3) are satisfied, and such that the func-
tions F(f) (v,' c)f) ) approximately satisfy the
D.R.'s (1) together with unitarity (2) at some
finite set of points (v„). If the forms of the
trial functions and the set of points (vz) are
suitably chosen, then the resulting functions
F(l)f (vt c&(f)f(afi)) will be approximate solutions
for the ImAV)f(v) throughout the region spanned

by the points (v„j. These ideas will be made
clearer in the following application.

Let us approximate the amplitudes A (v, eos8)
by sums of S, P, and D waves. In this paper,
we calculate only the S waves; we regard the
P and D waves as given functions of p, fo, and

f,' parameters for v ~ 0, and we assume ImA"'2(v)

to be negligible for v ~ 0. The resonance pa-
rameters reported by Rosenfeld et al.' are v(p)
=6.67, I'(p) =1.02; v(f, ) =19.7, I'(f,) =0.85;
v(f, ') =29.2, l (f,') =0.62. These parameters
are to be substituted into Breit-Wigner-type
formulas with appropriate threshold behavior;
we use'

2 2E+1
(

(1+1/v) 'y v/I
ImA (v) =

2 2 2l+1'
16(v+1)(v-v ) +y v

R 8
(4)

where y~ -=4(vR+ I)'I'& /v& I+1. The f, and
fo' resonances are well separated, so we sim-
ply use the sum of their contributions for ImA'2'o(v),

v +~0.

Next we introduce trial functions F( )f(v,'c~( )I)
to represent each ImA( )f(v), v ~ 0. The choice
of trial functions is fairly arbitrary, but some
guide lines are worth noting. The F( )I are
to be defined for 0-v ~A, where A is some
cutoff value large enough to justify neglecting
hi her contributions to the integrals. Each
F ) must tend to apfv as v-0. The F( ) and
(d/dv)F(0) should be continuous for 0& v&A.
Lastly, the F(0)f should be especially flexible
in the regions where they make their major
contributions to the integrals, and wherever
the solutions vary rapidly.

In our present calculation, we shall impose
the D.R.'s (1) and unitarity (2) at a set of points

1v„) on the interval 0 & v„&6 (276 MeV &Ec m
&730 MeV). We place the cutoff at A=20 (1260
MeV). For 0 & v &20, we define each F( )I to
be a linear function of six parameters c,(0)f,
~ ~ ~, c,(0)f which represent af2, ImA(0)f(v, ) at
vz = —,', —', , —'„and 6, and (d/dv) ImA( )f [„respec-
tively. We further define the F(0)f to depend
on v in the following ways: for 0 & v & —,', F( )f(v)
= v 2 x quadratic; for —, & v - -'„F (v) = quadrat-
ic; for —, & v & 6, F(0)f(v) = cubic. We will ob-
tain solutions which suggest a broad isoscalar
resonance somewhat above v =10. According-
ly, we extrapolate F&"o above v = 6 by F"'o(v)
=1-n(P+ v)'/v' for 6 & v & 20, where n and P
are determined by c,"",c,'"', and our contin-
uity conditions. We use a linear extrapolation"
for F"'. 8"'(v) =linear for 6- v -20. Final-
ly, we impose continuity on each F(0) and d/
dvF(0)f for 0&v&A=20. These conditions unique-
ly determine each F( )f in terms of v and the
corresponding six parameters c (0)f defined
previously. It is straightforward to construct
explicit formulas for the F(0)f(v', c&(0)f), and

to compute their contributions to aIl requisite
integrals.

The only remaining step in our solution is
to impose Eqs. (1) and (2) on the F(0)f at a set
of points (vj in such a way that the resulting
F(0)f(v;c&(0)f(ay~)) will be approximate solu-
tions for the ImA(0)f over the interval 0 & v & 6.
We proceed in the following way. Let the points
v~ = —,'22, , n = 1, ~ ~ ~, 12." Next we substitute

~1F( ) (v„)[(1+I/v„)~ F(0)I(v~)jj2 for ReA(0)f(v )
in the left-hand sides of the D.R.'s (la), letting
the sign of the radical be determined by the
sign of the right-hand side, which is now a known

function of the ay~, the c&(0)f, and the p, fo,
and f, ' parameters. In general, there will be
a discrepancy 6(0)f(v„;ay~', c&(0)f ) between the
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resulting left- and right-hand sides. For giv-
en values of the alI, we compute the values
of c,(0)1,~ ~ ~, c,(0)I' which minimize a suitably
weighted sum of discrepancies squared; spe-
cifically, we minimize the function

I. =- —,
' (2a, -5a,).

Weinberg and Schwinger' have used current
algebra and chiral symmetry, respectively,
to predict'

L =g 2m /2xF =0.10m
V n m

(5)

The ratio ao/a, depends on details of the chi-
ral-symmetry-breaking part of the Lagrang-
ian. Weinberg's hypothesis for the breaking
of symmetry leads to a,/a, = --', , while Schwing-
er suggests two alternative hypotheses which
lead to the ratios -2 and ——,', respectively.

P [a (v;a„c. )/v ) .(o)I (o)I

I=0, 2 @=1

Then the resulting functions F(0)1(v,' c '(0)1(all))
are approximate solutions" for ImA(0 I through-
out the region 0 ~ v &6. Once the c~( (ap).(0)1

are known, we calculate the phase shifts up
to v =10 (915 MeV) by evaluating ReA( )1(v)
directly from the D.R.'s (la).

Let us define a parameter L,:

50(500) =35.8'+(L-0.100) x230',

(),(500) = -10.2'-(I.-0.100) x 120'

+ (a, + 0.75L) x72',

() (730) = 64'-(L-0.100) x 530',

5,(730) = -17.6'-(L-0.100) x 360'

(7a)

(7b)

(7c)

+(a, +0.75L) x160 . (71)

For 0.090 & L ~ 0.105 and ——,
' ~ ao/a, ~ -a',

() (915)=72'-(L, -0.100) x 1200'

For the three pairs of ar with (a,/a„L) given

by A, (-2, 0.105); B, (-&, 0.100); and C, (-2,
0.095), we present in Fig. 1 our solutions for
the corresponding 8-wave phase shifts 51, to-
gether with the 5~ reported by Walker et al.'
The agreement is excellent except for 5, below
500 MeV. Walker's 51 were inferred from ~N
—~mN data by assuming a peripheral model
for the amplitudes. Our small values for 5,
near threshold suggest that peripheral v pro-
duction is not dominant there, so that Walker
may have misinterpreted the data below 500
Me V. '4

As L and a,/a, vary over the ranges 0.085
~ L ~ 0.115, --', - a,/a, ~ --,', we find that with-
in 3%, the ()I at 500 and 730 MeV are given

by

l20

l00—

+(a2+0.75L) x160',

() (915) = -16.8 -(I -0.100) x 680'

+ (a2 + 0.75L) x 290',

(7e)

(7f)

80—

tO

4) 60—
Cl

~ 40

within 3% and 2', respectively.
The dispersion integrals in the D.R.'s (la)

are multiplied by v(v-v, ) -E', so that our so-
lutions become less reliable as F. increases.
We present in Table I uncertainties in ()1(E)
which result from uncertainties in the p, f„
and f, ' widths, and also variations in the 5I

20
Table I. Changes in 5$E) resulting from changes in

the input. Changes listed are averages for cases A, B,
and C.

—20
6p (52 (500) 5p 62 (730) 6p 62 (915)

I

300
I

500
I

?00
E, (Mev)

I I

900

FIG. 1. The phase shifts calculated by method de-
scribed in text. Cases A, B, and C correspond to (ao/
am, I.) = (—$, 0.105), (-2, 0.100), and (-a, 0.095), respec-
tively.
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which result from varying the cutoff A. From
threshold up to m&c'=500 MeV, the solutions
are quite stable, even if we lower the cutoff
to A = 10. This energy range is of interest for
weak interactions. Equations (7a) and (7b) im-
ply that if L = 0.100+ 15% and --', ca,/a, ~ ——,',
then

5 (m )-5 (m )=48 +7'.

Equations (1) and (3) imply that

X = --,' (ao+ 2a, ) + integrals,

g, = L+ integrals,

(8)

(9a)

(9b)

where the integrals are quite small for the so-
lutions obtained in this paper. We present in
Table II the values for A, X» A( ) (v,), and
~' which correspond to the solutions A, B, and

C of Fig. 1.
Our values for the p, f„and f, ' contributions

to

f ,
1~("'(, )

dv
Qo P V -Vp V -V

are roughly given near threshold for

Table II. Selected characteristics of solutions A, B,
and C.

A.( A (v()) A (v())

A -0.0036 0.104 9.4x 10 1.8 x 10 2.2 x 10
B 0.0085 0.103 9.4x10 ' 1.3x10 3.7x10 '
C 0.0198 0.101 9.5 x 10—4 9.2 x 10—5 4.6 x 10—4

may be possible to obtain a class of solutions
for

leap
with a resonance near 750 MeV. This

possibility is being studied further. " On the
other hand, Malamud and Schlein's 5, is incon-
sistent with the al considered in this paper,
and its energy dependence seems implausible.

Obviously the P wave is of great interest.
In future work, we can take the subtraction
constant A'"'(v, ) "=" -(2/9)X, from our present
work and predict the P-wave and p parameters,
or we can assume that ReA'"' =0 at 769 MeV
and predict the p width and g, . More ambitious
predictions can also be attempted. " Such work
is in progress.

It is a pleasure to thank Professor S. Man-
delstam for several illuminating discussions
of v-v D.R.'s, and Professor G. Feinberg for
a critical reading of the manuscript.

by

-1 11+v '
-', 56+v'

and ~ x (10)

dP /dE (,so =0.2'/MeV,

for 0.08 L - 0.12, —
2 ao/a2 ~ -2. Thus it

(11b)

respectively. However, the Legendre series
converges' only for v& -9. Since the poles in

Eq. (10) occur for v &-9, our values for the
resonance contributions are open to question,
especially the f, and fo' contributions.

Recently Malamud and Schlein" have used
&N —7T~N data and a modified peripheral mod-
el to infer 01 somewhat different from those
of Fig. 1. They report an isoscalar resonance
near 750 MeV, with sin'5p decreasing to —,

' near
820 MeV (v -8). If we seek a self-consistent
solution of this type by placing the cutoff at
A=10, we obtain

5,(730) -=70 —(L—0.100) x350

-(L-0.100)' x 5000', (11a)
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tain addition to Eqs. (3), we can impose three second-
derivative crossing relations on the S, P, and D waves.
[Cf. Ref. 2, Eqs. (3.12), (3.13), and (3.14).] These re-
lations may have implications for an isoscalar reso-
nance. Furthermore, imposition of all six crossing re-
lations might enable us to predict the S and P waves
with no input except the D waves.
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The use of the S-matrix dispersion-theoret-
ic technique in the realm of quantum electro-
dynamics may be a matter of personal taste.
Nevertheless, the demand for a consistent an-
swer between the 8-matrix calculation and the
perturbation calculation, when both methods
are supposed to be valid, is not entirely an
idle question.

In an extensive review article, ' Chou and
Dresden (CD) succeeded in rederiving a num-
ber of mell-known lower-order perturbation
results of quantum electrodynamics by the use
of the S-matrix technique. However, in one
particular example, namely, the third-order
vertex part with an off-shell external electron
line, ' the situation was somewhat unsatisfac-
tory. The S-matrix calculation of CD for this
example was incomplete. In order for their
calculation to yield the same result as obtained
from the conventional perturbation calculation
by Akhiezer and Berestetskii (AB),' a conjec-
ture on a certain integral identity was proposed

by CD.
We wish to point out the following observa-

tion: (a) The conjecture of CD is not borne
our by an explicit calculation. CD's final an-
swer therefore does not coincide with the per-
turbation result of AB.

(b) The perturbation calculation has been re-
peated. Our result confirms that given by AB.'

(c) The discrepancy is traced. The way out
of the quandary in the S-matrix approach is
shown.

The problem involves the calculation of the
amplitude corresponding to the third-order
vertex part in electrodynamics where the ex-
ternal photon (momentum q) and one of the two
external electrons (momentum P) are on the
mass shells. The other electron (momentum
P+q) is in general off-shell, except when the
external photon has null four-momentum. The
latter possibility corresponds to the subtrac-
tion term that is needed in performing the reg-
ularization.

The vertex part is given by

Z/2

T(p+s, p, s)=cosss(2 ~ 7(p+s)e a (p+s, p, s)s(p),

A (p+q, p, q) = (o./2m')[Ay +B(yq)y + Cp +D(yq)p ].
p, p, p,

(2)

The expressions for B, C, and D given by CD are identical to those obtained in the perturbation the-
ory. These terms are stable, so to speak. The difference occurs in the coefficient of the y& term
in E(I. (2).

(i) In the perturbation calculation, we have

inp+ —[E(p—I)-F (—I)],2(p-I)

a = ln(A/m) + —,',


