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MAGNETIC EQUATION OF STATE AND SPECIFIC HEAT OF EuS NEAR THE CURIE POINT
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IBM Watson Research Center, Yorktown Heights, New York

(Received 8 February 1968)

The specific heat of EuS near the critical point is a homogeneous function of field and
temperature. In zero field e =0 and o. ' = —0.25, and along the critical isotherm the field
variation is logarithmic.

Of utmost relevance to the problem of con-
tinuous phase transitions is the critical com-
parison of theoretical predictions with exper-
imental results of model systems. In this Let-
ter we present the first experimental obser-
vations of the magnetic specific heat of a cu-
bic Heisenberg ferromagnet, EuS, as a func-
tion of field along isotherms at and near the
critical point, both above and below T . The
exponents e and cv' which describe the zero-
field specific heat near T~ have been accurate-
ly obtained, and the variation of specific heat
with field along the critical isotherm is report-
ed. Furthermore, evidence is given that in
the dependence of the magnetic specific heat
CM on field H and temperature T, the specif-
ic heat obeys the same special type of equation
of state both above and below the critical point
T~. The equation of state followed by EuS is
exactly analogous to that proposed by Widom'
for a fluid near its critical point and leads to
scaling laws relating the indices describing
the variation with H and T of the principal ther-
modynamic properties near T . The first ex-
perimental confirmation of such an equation
of state was observed by Kouvel and Rodbell'
for measurements relating the magnetization
to field and temperature of CrO, and Ni above
T~. The present work constitutes the first
confirmation that thermal properties obey the
same kind of equation of state.

The temperature dependence of the magnet-
ic specific heat near T~ is described by the
index a, such that
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imply that C = -g in&+5, the familiar logarith-
mic divergence of the specific heat at the crit-
ical point.

The experimental results, shown in Fig. 1,
extend over four decades from 5x10 'T to

C5x10 'T and nearly a decade in CM from 4
to 30 J/mole deg. A logarithmic form of di-
vergence is clearly indicated down to 5x10 ~T

for T & T~. For T & T~ the specific heat is not
divergent, indicating that n' in Eq. (lb) is neg-
ative.

In an attempt to assign significant values
unambiguously to o. , n', Tc an Tc', a lin-
ear least-squares analysis was made of the
data in terms of Egs. (1a) and (1b). Let us
consider the ease T & T, the method of anal-
ysis being identical for T & T~ . Fixed values
were assigned to cv and T~. This linearizes
Eq. (Ia) to the form Ax+8, so that one is able
to find the best values of A. and B for this par-
ticular choice of n and T~. The rms deviation
of experimental points from this curve is a
measure of the confidence which we can place
in this particular choice of n and T~. Holding
e constant, we can calculate the rms deviations
as a function of the parameter "T " and obtain
a curve whose minimum is the best value of
T~ for that particular choice of n. We now

choose another value for n and repeat the pro-
cedure for a similar set of values of T~. A
family of these deviation curves for various

C =(A/n)(e -1)+B, for T-T

where
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In the limit where o. -0, these expressions FIG. 1. Magnetic specific heat of EuS.
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fixed values of e is represented in Fig. 2.
The minimum of the family of curves repre-
sents the "best" value of n and T~ commensu-
rate with the data. We are able not only to
determine values for a and Tz in a sensitive
manner, but also to place realistic confidence
limits on our values for a by a simple technique.

The technique by which we determine confi-
dence limits is the following: For the "best"
value of a and T~ we have examined a plot of
b, CM, the difference between the measured
and calculated specific heat, as a function of
temperature. This graph resembles a complete-
ly random array of deviations of ACM about

ACM =0, within the limits of LCM-+0. 02CM.
If T~ is now held constant and the same plot
is redone for values of n about the "best" val-
ue, the random picture begins to show a sys-
tematic trend away from LCM —-0. We define
the limits on z by the range over which z may
be varied until the systematic trend becomes
apparent. This turns out to be a range of +0.03.

By applying the identical procedure to the
range T&T~', we obtain values for n' and T~'.
A summary of our results follows.

or T-Tc+,

n =0.00' 0.03, g =4.21, ~ =9.47 J/mole deg,
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indicated by the flat portion of the curves of
Fig. 1 nearest T . The analysis for determin-
ing a and n' has excluded points in a so-called
"grey" region which is described more fully
in the following Letter. ' In the present discus-
sion we emphasize that the observation of n'
& 0 is distinct from these rounding effects.

We have measured the specific heat of a 5-
mm-diam sphere in fields of 220, 300, 360,
500, 600, 720, 915, 1350, and 1830 Qe. Th.
magnetic field dependence of the specific heat
along the critical isotherm has been derived
from free-energy considerations by Helfand.
If g is defined as the index describing the be-
havior of CM(P) at T, then

FIG. 2. Hms deviation of experimental points from
calculated curve as a function of choice of e and 7.'~.

T =16.427'K, B=—2.50, 5=-2.50 J/mole deg.
C

For T-T
o. '=-0.25+ 0.03, A'=7. 59 J/mole deg,

T ' = 16.426'K, B' = 4.33 J/mole deg.
C

C ~II at T=T .
C

The appropriate scaling law relating e, g,
and y is given by

C = 2~/(2+y-~),

(2)

(3)

The most remarkable result of these calcu-
lations is clearly the existence of a negative
e'. This negative e' character of the specif-
ic heat below T ' persists to below 8'K. In
fact, if we limit the least-squares analysis
to a narrower temperature range near T~, the
same value of z' is obtained. In other words,
the power law, Eq. (lb), accurately represents
the variation in specific heat over the whole
range.

We are now in a position to say that a=0 and
n' & 0 is an intrinsic property of the cubic Hei-
senberg system and has been observed exper-
imentally for EuO, RbMnF„and ¹i,s as well
as EuS. By way of contrast, for MnF2, 6 an an-
istropic Heisenberg antiferromagnet, both e
and n' are very nearly zero.

Another feature of the results is the evidence
for a width of -5 mdeg K for the transition as

where y is the exponent which describes the
susceptibility y(T). Thus if n is equal to 0,
then g is 0, which implies logarithmic varia-
tion of CM(H) at T . We have examined our
results along isotherms near T as a function
of logII. The critical isotherm is a straight
line, which implies that g is indeed 0. This
constitutes the first experimental measurement
of g, and also the first test of the scaling law,
Eq. (3).

We will now show that C(P, T) conforms to
a simple qualitative scheme. Isotherms of
1/C vs P/C form a regular set of curves which,
for small values of H/C, has the form

1/C = 1/C'+D(T) (Jf/C). (4)

The remarkable result is that when the isotherms
are normalized by intercept and initial slope,

720



VOLUME 20, NUMBER 14 P H YSI CAI. RIVI m W LZ ITERS 1 APRIL 1968

a universal curve is obtained:

1/C, H/C
1/c' H /c"

where

1/c (r) =- [1/c] (r r)-,H=0 c

(5)

(6)
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We have done the above normalization for
the isotherms of 1/C vs H/C above Tc up to
a value of T-T~=0.15 K, as well as for fields
up to 1350 Oe, using the quantities defined in
Eqs. (4) and (5). The results are shown in

Fig. 3. It is clear that all the experimental
points considered describe a single universal
curve. For fields greater than 1350 Oe and

T-Tz greater than 0.15', deviations from this
universal curve begin to appear.

A similar analysis was done below T~ for
T~ —T & 0.01'K. For temperatures below this
range, it becomes virtually impossible to de-
fine D(T) because the lowest field curves merge
into the zero-field curve on account of the rap-
id increase of the demagnetizing field in the
ferromagnetic region. However, in this nar-
row temperature range the scaling procedure
also yields a single universal curve, with the
important exception of the zero-field specif-
ic heat.

Thus we have shown that EuS obeys a gener-
al relationship of the form

1/C H/C
1/c' H'/c' '

where E((H/C)(H'/C') ') reduces to the right-
hand side of Eq. (5) for small values of H/C
as indicated by the dashed line in Fig. 3. In
particular, with the use of Eqs. (6) and (7),
we observe that

FIG. 3. Normalized isotherms for EuS.

In the limit as T-Tc [equivalent to (H/C)
&&(H /C') '-~], Eq. (8) must merge with Eq.
(2) which defines C~H ~ at Tc. Thus, in this
limit

c /c (H /H)

C = -~/p (12)

We now have a scaling law which relates g

to z and p and again observe that when z-0,
g-0. This behavior is borne out by the exper-
imental result that CIA(H) ~logH along the crit-
ical isotherm.

Equation (8) is exactly equivalent to one of
the Widom equations of state, in which the free
energy contains a homogeneous function of its
variables. Thus the observation that EuS con-
forms to the same equation of state leading
to the scaling law given in Eq. (12) verifies
experimentally this theoretical approach to
continuous phase transitions.

It is a pleasure to acknowledge stimulating
discussions with B.Widom and E. Helfand.
Careful preparation of the EuS sample by M. W.
Shafer and C. F. Guerci is greatly appreciated.

(11)

which may be rewritten as C ~ [C /(H ) ~]H
For Eq. (2) to be valid it is required tha, t C /
(H0) & be a constant.

Consequently, from Eqs. (9) and (10), C0/
(H0) 0 ~ (T Tc) & -~P and is constant. There-
fore, -n-gp must be zero, and we obtain

0 Qc ~(r-T )
C

and

H ~(r-T )
0 ~p

C

where

+=0 and p= -.
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The specific heat of EuS is found to remain logarithmic in nonzero field, and the be-
havior is discussed in terms of a complex critical temperature.

Our expectations were put succinctly by Domb':
"The key to a more precise approach to such

relations between (critical) indices lies in the
equation of state of a ferromagnet in a nonze-
ro magnetic field using the result that all sin-
gularities disappear in the presence of such
a field. "

In the preceding Letter we have indeed de-
rived the equation of state near the critical
point from specific-heat measurements in non-
zero field, and we have shown that specific-
heat isotherms near the critical isotherm can
be reduced to a single homogeneous function
of field and specific heat by normalization to
zero-field parameters. But contrary to expec-
tation, we find that specific-heat isochamps
—curves of temperature variation in constant
field —are functionally insensitive to the appli-
cation of fields as large as 10% of the satura-
tion Weiss field. Following a suggestion by
Blume, ' we have analyzed our results in terms
of a complex temperature plane in which the
singularity ean exist under the influence of
an applied field. The path described by the
singularity in the complex plane may termin-
ate ideally in zero field at a point on the real
axis corresponding to the usual Curie tempera-
ture. In actual samples, however, the finite-
ness of the specific-heat maximum as seen
from above T~ becomes a manifestation of
a nonzero imaginary temperature component
arising from inhomogeneous fields.

We believe this to be the first instance in
which the critical point is treated as a complex
quantity, and the analyses of other measure-
ments from this point of view may be interest-
ing.

The fundamental experimental result is shown

in Fig. 1. Three specific-heat isochamps are
plotted against reduced temperature, (T TH)/—

where, as IJ-0, TIJ-T~, 7 0, and

a(H), b(H) -a, b,

the zero-field values reported in the preced-
ing Letter.

We have compared Eq. (1) with nine isochamps
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FIG. 1. Specific-heat isochamps for EuS. The sol-
id curves are calculated using Eq. (1).

T&, where T@has been chosen for each field.
At temperatures greater than 10 'T~ the curves
approach simple logarithmic behavior, but
closer to T& a finite value of specific heat is
approached that depends inversely on the field
strength. The solid curves are the computed
specific heat along the real axis for a logarith-
mic pole of amplitude a(H) located at TH+ i 7.

That is, the experimental isochamps ean be
represented by

c=a(H) in([(T T) + w']/T— 'P '+b(H),
H IJ
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