in InSb is given on p. 337 of H. Ehrenreich and A. W. Overhauser, Phys. Rev. <u>104</u>, 331 (1956).

¹¹See, for example, R. Loudon, Proc. Roy. Soc. (Lon-

don) <u>A275</u>, 218 (1963). ¹²A. Onton, P. Fisher, and A. K. Ramdas, Phys. Rev. Letters <u>19</u>, 781 (1967).

SCHIFF'S PROPOSED GYROSCOPE EXPERIMENT AS A TEST OF THE SCALAR-TENSOR THEORY OF GENERAL RELATIVITY

R. F. O'Connell* Institute for Space Studies, Goddard Space Flight Center, National Aeronautics and Space Administration, New York, New York (Received 20 November 1967)

We compare an explicit expression for the precession of a gyroscope in the Brans-Dicke scalar-tensor general relativity theory with the result derived by Schiff using Einstein's theory, and suggest that the gyroscope experiment offers the best possibility for testing the Brans-Dicke theory. Further, we conclude that the gyroscope in a satellite offers a more sensitive test than the earth-bound gyroscope.

Einstein's general theory of relativity is generally acclaimed as the correct theory of gravitation. Perhaps its only serious challenger is the scalar-tensor theory of Brans-Dicke (BD).¹ In the latter theory the gravitational constant is normalized to give the well-known red-shift result, and the dimensionless coupling constant ω is selected to be ≥ 6 to ensure that the result for the precession of the perihelion of Mercury agrees, with an accuracy of 8% or less, with the computed value predicted by Einstein's theory. For $\omega = 6$, the BD theory gives a precession of 39.6" arc/century which is about 3.43" arc/century less than Einstein's value. The recent work of Dicke and Goldenberg² on the contribution of solar oblateness to the precession of the perihelion seems to favor the BD theory, but there is considerable controversy surrounding both the measurement itself³ and the relation⁴ between the surface oblateness and the interior oblateness (the latter being the source of the quadrupole moment). It has recently been shown⁵ that the rate of gravitional radiation from a system of binary stars in BD theory is smaller than the value predicted by Einstein's theory by a factor of $(2\omega + 3)/(2\omega + 4)$; however, it seems that it will be a considerable time before this test is experimentally feasible. Cosmological tests⁶ have likewise been unable to resolve the question. It is our purpose in this communication to suggest that perhaps the best test is the gyroscope experiment proposed by Schiff.^{7,8} In particular, we write down an explicit expression for the precession of the gyroscope in BD theory for comparison with the Einstein value.

The angular velocity of precession in Einstein theory, $\bar{\Omega}_{\rm E}$ say, may be written as⁸

$$\vec{\hat{\Omega}}_{\rm E} = \vec{\hat{\Omega}}_{\rm T} + \vec{\hat{\Omega}}_{\rm DS} + \vec{\hat{\Omega}}_{\rm LT}, \tag{1}$$

where $\vec{\Omega}_{T}$, $\vec{\Omega}_{DS}$ and $\vec{\Omega}_{LT}$ are the so-called Thomas, de Sitter, and Lense-Thirring contributions, respectively. Explicitly,⁸

$$\Omega_{\rm T} = \frac{1}{2} (\vec{f} \times \vec{v}), \qquad (2a)$$

$$\Omega_{\rm DS} = (3m/2r^3)(\mathbf{\tilde{r}} \times \mathbf{\tilde{v}}), \qquad (2b)$$

$$\Omega_{\rm LT} = (I/r^3) [(3\vec{r}/r^2)(\vec{\omega}\cdot\vec{r}) - \vec{\omega}], \qquad (2c)$$

where \overline{f} is the acceleration arising from any nongravitational constraint, *m* is the mass of the gyroscope (c = G = 1), \overline{r} its position vector with respect to the center of the earth, \overline{v} is its velocity vector, and *I* and ω are the moment of inertia and rotational angular velocity of the earth, respectively.

Following Eddington⁹ and Robertson¹⁰, Schiff¹¹ has written the metric for the <u>nonrotating</u> earth in its most general isotropic form:

$$ds^{2} = [1 - 2\alpha (m/r) + 2\beta (m/r)^{2} + \cdots]dt^{2}$$
$$-[1 + 2\gamma (m/r) + \cdots](dx^{2} + dy^{2} + dz^{2}), \qquad (3)$$

and deduces that the de Sitter term is modified by a factor $(\alpha + 2\gamma)/3$. For the particular case of the BD theory it is easy to show that this factor is $(3\omega + 4)/(3\omega + 6)$. Being a special-relativistic effect only, the Thomas precession remains unchanged in the BD theory. However, there is a change in the Lense-Thirring effect which is deduced quite easily from an observation made by the present author and Salmona⁵ to the effect that, in the weak-field limit, the solutions of the transformed¹² BD equations (the so-called barred system) are exactly the same as the solutions to Einstein's equation except for a factor. Explicitly,⁵

$$(\overline{h}_{\mu\nu})_{\rm BD} = [(2\omega+3)/(2\omega+4)](h_{\mu\nu})_{\rm E}$$
(4)

in the weak-field limit. This immediately enables us to conclude that the Lense-Thirring precession is reduced by a similar factor.¹³ Thus, the angular velocity of precession in BD theory, $\Omega_{\rm BD}$ say, may be written as

$$\vec{\Omega}_{BD} = \vec{\Omega}_{T} + [(4+3\omega)/(6+3\omega)]\vec{\Omega}_{DS} + [(3+2\omega)/(4+2\omega)]\vec{\Omega}_{LT}.$$
(5)

Note that the factor modifying the de Sitter term turns out to be identical to the factor appearing in the perihelion precession angle¹ in BD theory (this is not true in general, of course). For a value of $\omega = 6$ we obtain

$$\vec{\Omega}_{\rm BD} = \vec{\Omega}_{\rm T} + (11/12)\vec{\Omega}_{\rm DS} + \frac{16}{16}\vec{\Omega}_{\rm LT}.$$
 (6)

It is clear that the most sensitive test of the BD theory occurs when Ω_{DS} and Ω_{LT} attain their maximum possible values. Now, for a gyroscope in a satellite at moderate altitude (orbiting the earth's equatorial plane and with the gyroscope spin axis normal to the earth's axis), Ω_{DS} is about^{11,14} 7"/yr, Ω_{LT} is about 0.1''/yr, and Ω_T is practically zero (Ω_T can be made exactly zero if the slave satellite idea of Pugh¹⁵ is adopted). For a gyroscope in an earth-bound laboratory^{11,14} (with spin axis normal to the earth's axis), $\Omega_{\rm E}$ is roughly 0.4"/ yr with $\Omega_{\rm T}$, $\Omega_{\rm DS}$, and $\Omega_{\rm LT}$ contributing to the same order of magnitude. It is thus clear that the gyroscope in a satellite offers the most sensitive test of the BD theory (particularly of the terms in the BD metric which contribute to the de Sitter effect); it is fortunate that this is also the most convenient experimental arrangement.^{7,8,11,14} With regard to experimental accuracy, Schiff¹¹ states that the direction of the spin axis can be read out with an accuracy of 0.1"; an accuracy of 0.0" now appears possible.¹⁷ Thus we see the favorable possibilities that exist for distinguishing between $\Omega_{\rm E}$ and $\Omega_{\rm BD}$. As a further refinement, we note that it will also be possible to test separately the $(4+3\omega)/(6+3\omega)$ and $(3+2\omega)/(4+2\omega)$ terms appearing in Eq. (5). This arises because of the different angular dependences. For example,⁸ at a laboratory latitude of 35°16′ the secular precession arising from the Lense-Thirring effect is zero.

To summarize, we consider that the Schiff gyroscope experiment offers the best possibility for testing the BD theory and that the gyroscope in a satellite offers a more sensitive test than the earth-bound gyroscope.

This research was accomplished while the author held a National Research Council Senior Research Associateship supported by the National Aeronautics and Space Administration; he would like to thank Dr. Robert Jastrow for his hospitality at the Institute for Space Studies.

³Joseph Ashbrook, Sky and Telescope <u>34</u>, 229 (1967); R. H. Dicke, <u>ibid. 34</u>, 371 (1967); William P. Hirst, <u>ibid. 34</u>, 371 (1967).

⁴I. W. Roxburgh, Nature <u>213</u>, 1077 (1967); R. H. Dicke and H. Mark Goldenberg, Nature <u>214</u>, 1294 (1967); L. N. Howard, D. W. Moore, and E. A. Spiegel, <u>ibid. 214</u>, 1297 (1967); R. H. Dicke, Astrophys. J. <u>149</u>, L121 (1967); W. J. Cocke, Phys. Rev. Letters <u>19</u>, 609 (1967).

⁵R. F. O'Connell and A. Salmona, Phys. Rev. <u>160</u>, 1108 (1967).

⁶R. H. Dicke, <u>The Theoretical Significance of Experi-</u><u>mental Relativity</u> (Gordon and Breach Publishers, Inc., New York, 1964); R. H. Dicke and P. J. Peebles, Space Sci. Rev. <u>4</u>, 419 (1965).

⁷L. I. Schiff, Phys. Rev. Letters 4, 215 (1960).

⁸L. I. Schiff, Proc. Natl. Acad. Sci. U. S. <u>46</u>, 871 (1960).

⁹A. S. Eddington, <u>The Mathematical Theory of Rela-</u> <u>tivity</u> (Cambridge University Press, New York, 1957), p. 105.

¹⁰H. P. Robertson, in <u>Space Age Astronomy</u>, edited by A. J. Deutch and W. E. Klemperer (Academic Press, Inc., New York, 1962), p. 228.

¹¹L. I. Schiff, in <u>Conference International sur les Théories Relativistes de la Gravitation</u>, edited by L. Infeld (Gauthier-Villars, Paris, France, and PWN-Polish Scientific Publishers, Warsaw, Poland, 1964), p. 71; L. I. Schiff, J. Soc. Appl. Math. <u>10</u>, 795 (1962).

¹²R. H. Dicke, Phys. Rev. <u>125</u>, 2163 (1962).

¹³D. R. Brill, "Erweiterte Gravitationstheorie, Machsches Prinzip und Rotierende Massen" (to be published), has obtained a similar factor for the Jordan theory, and the Jordan and BD theories can be made to coincide for a particular choice of parameters. I would like to thank Dr. Jeffrey Cohen for pointing out this pre-

^{*}On leave of absence from Department of Physics, Louisiana State University, Baton Rouge, La.

¹C. Brans and R. H. Dicke, Phys. Rev. <u>124</u>, 925 (1961).

²R. H. Dicke and H. Mark Goldenberg, Phys. Rev. Letters <u>18</u>, 313 (1967); R. H. Dicke, Nature <u>202</u>, 432 (1964).

VOLUME 20, NUMBER 2

print to me.

¹⁴L. I. Schiff, Phys. Today <u>14</u>, No. 11, 42 (1961). ¹⁵G. E. Pugh, Department of Defense, Weapons Systems Evaluation Group Research Memorandum No. 11, 1959 (unpublished). ¹⁶C. W. Sherwin, Phys. Today <u>14</u>, No. 11, 42 (1961). ¹⁷C. W. F. Everitt and W. M. Fairbank, in Proceedings of the Tenth International Conference on Low Temperature Physics, Moscow, USSR, 31 August-6 September 1966 (to be published).

K^+d STRUCTURE IN I=0 AT 1.2 GeV/c AS A RESULT OF S-STATE $K \rightarrow K^*(890)$ CHANNEL COUPLING

Margarete Krammer*

Deutsches Elektronen-Synchrotron, Hamburg, Germany

and

Earle L. Lomon Laboratory of Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 27 November 1967)

A well-defined peak has been reported¹ in the K^+d total cross section at 1.2 GeV/c K^+ laboratory momentum. Subtraction of the K^+p cross section and making the Glauber correction for screening leaves an I=0 peak of approximately 6 mb above background and a width of about 150 MeV.¹

We wish to report that a previous fit to the data² below 800 MeV/c contains a prediction of this experimental peak. The purpose of Ref. 2 was the explanation of the rise in the I=0, S-state phase shift between 400 and 800 MeV/c. The successful mechanism was the coupling of this K^+N state to the S-state $K^*(890)N$ channel whose threshold is at ~1000 MeV/c. A simple boundary condition model was used. The boundary radius r_0 , in the theoretically indicated range, was taken from an earlier I=1 fit.³ The three homogeneous boundary condition parameters were fitted to the scattering length and phase shifts below K^* threshold. The amount of K^* production predicted at higher energies was comparable with that observed in the I=1 channel and was quantitatively related assuming isovector exchange.

In Ref. 2 the K^* width was ignored, as all detailed comparisons were at energies more than 200 MeV/c below K^* threshold and thus insensitive to its width. We have now included the effect of the K^* width and recaluculated results in the region 0-1.5 GeV/c. The nonvanishing width requires that Eq. (4) of Ref. 2 be replaced by⁴⁻⁶

$$f_{\text{eff}}^{0} = f^{0} - (f_{c}^{0})^{2} \int \frac{\rho(m)}{f_{*}^{0} - ir_{0}K(m)} dm, \qquad (1)$$

where K(m) is the relativistic momentum of a K^* of mass m in the center-of-momentum system; f^0 , f_c^0 , and f_*^0 are constants; and $\rho(m)$ is the resonance shape in high-energy K^* production,

$$\rho(m) = N \frac{\gamma(q/q_*)^3}{(m^2 - m_*^2)^2 + (m_*^4/m^2)\gamma^2(q/q^*)^6}$$
(2)

for real pion momentum q(m) in the K^* rest system, and vanishes for imaginary q(m). The normalization is $\int \rho(m) dm = 1$. q(m) is given by

$$(q^{2} + m_{K}^{2})^{1/2} + (q^{2} + m_{\pi}^{2})^{1/2} = m.$$
 (3)

 γ is the reduced width and m_* and q^* are the values of m and q at the K^* peak.

With the above $f_{\rm eff}^0$ the complex amplitude is computed as in Ref. 2. Using $m_* = 891$ MeV and $\gamma = 50$ MeV the phase-shift fit of Ref. 2 was restored by small variations of the boundary conditions. The choice $f^0 = 4.1$, $(f_C^0)^2 = 10.2$, and $f_*^0 = 1.3$ at $r_0 = 0.45 m_{\pi}^{-1}$ fits the phase shift δ_{00} below threshold as shown in Fig. 1. The predicted K^+N scattering length is a_0 $= 0.036 m_{\pi}^{-1}$. The same figure shows the calculated values of δ_{00} and η_{00} above threshold. The resulting $\sigma_{\rm tot}^0(S_{\frac{1}{2}})$ is peaked as shown in Fig. 2. The experimental $\sigma_{\rm tot}^0$ is obtained from $\sigma_{\rm tot}^{K^+d}$ and $\sigma_{\rm tot}^{K^+p}$ as in Ref. 1 and the error corridor obtained from

$$\Delta \sigma_{\text{tot}}^{0} = \{ [2\Delta \sigma_{\text{tot}}^{(K^+d)}]^2 + [3\Delta \sigma_{\text{tot}}^{(K^+p)}] \}^{1/2}, \quad (4)$$

neglecting any error in the calculation of deuteron effects. On subtracting $\sigma_{tot}^{0}(S_{\frac{1}{2}})$ from the experimental cross section the peak is re-