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DIRECT-CHANNEL RESONANCES FROM REGGE-POLE EXCHANGE*
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The p Regge amplitude for nN charge-exchange scattering with helicity flip is partial-
wave analyzed in the direct channel. This produces resonance circles on the Argand
diagram corresponding to the prominent experimental +* resonances.

B (E)= ,'f, dsI (s)-B(E,s). (2)
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We consider the p Regge amplitude for mN

charge-exchange scattering with helicity flip
Bcex. The usual parametrization and fit to
the high-energy data, pi = 5.8-18.2 BeV/c,
is'

Q-1 —Zvl'CV1-eB =8—
cex E&& sinwn I'(o)'

where a(t) =0.57+ 1.08t, and E is the labora-
tory energy of the m. Choosing Ep = 0 7 BeV
and P (t) = const = 60.3 mb, one correctly fits
the relative height of the near forward peak
and the secondary peak. We now extrapolate
this expression down to pL = 1.7 BeV/c and check
that it roughly fits do/dt. s Note in particular
that the dip at t = -0.6 BeV' persists down to
this energy and that the magnitudes of the near-
forward peak and of the secondary peak are
correctly given by the extrapolation of the high-
energy fit.

Our partial-wave analysis of B(E,z) in the
direct channel gives

We integrate out to 180', but we ignore the small
backward peak coming from N exchange. Fur-
thermore, if we want to use P (t) in (1) only
for those t values which have been measured, '

l t I(3.0 BeV', then we should stay below pl
=2.0 BeV/c. On the other hand, we should stay
above Pl =1.7 BeV/c in order to have (1) give
a rough fit to the do/dt data. Actually, we
let Pi vary beyond these limits and consider
1.0-pL-2. 4 BeV/c.

Because P(t) is constant it is irrelevant for
most of the following considerations, and we
put P = 1. The complex amplitude Bi, calculat-
ed from (1) and (2), is shown in Figs. 1(a),
1(b), and 1(c) for fixed I vs pl. Surprisingly,
the B~ describe circles on the Argand diagram.
Such circles are usually associated with res-
onances. We read off the momentum Pf at which

B~ reaches the top of the circle, and in Fig.
2 we plot these "resonance" momenta versus
l and compare them with the experimental res-
onances (1920, 2190, 2420). In Fig. 1(d) we
show B& for fixed Pl as a function of t. Such
a circle corresponds to an N* Regge pole and
indicates that the N* resonances plotted in Fig.
2 actually belong to an N* Regge trajectory.

Let us understand qualitatively why we obtain
circles. (1) The zeros of ImB at n =0, -1,
-2, etc. and the double zeros of ReB at e = 0,
-2, -4, etc. are crucial. Consider, fop exam-
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FIG. 1. (a)-{c) The complex amplitude Bt(PI ) for
fixed l versus the laboratory momentum PL. The num-
bers along the circles give the values of pf, . (d) Bt+I,)
for fixed Pl vs l. The numbers along the circle give
the values of l. For normalization we have put P = 1.

EL GeV

FIG. 2. Chew-Frautschi plot. Curve A. is the estab-
lished 7IN resonances and curve B is the N* resonances
from our partial-wave analysis of the p Regge ex-
change. EI =lab energy of r=PI . El is linear in
Ares) ~
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pie, Fig. 1(d). For pL = 1.4 we have n = -1.5
at 180 . Therefore ImB contains two zeros
in the physical region, -1-zs -+1, and the
l = 2 wave becomes particularly strong. (2) The
signature factor (I-e-t«) induces the correct
counterclockwise motion on the Argand diagram
because the phase of B(E, t) moves counterclock-
wise as (-t) increases, and the partial-wave
amplitude Bl(E) includes larger (-t) values at
higher energies. (3) The arguments given in

(1) and (2) are mainly relevant at intermedi-
ate energies, pL (3.0 BeV/c, since at high
energies the secondary peak is so much sup-
pressed that the presence of the nodes becomes
less relevant.

Are the circles in Fig. 1 really resonances?
The problem is that (1) and (2) are regular at
s = mres'-i(mi')re» they do not contain poles
corresponding to resonances. Let us give a
mathematical analog. Take g(z), the logarith-
mic derivative of the I' function. It has poles
(resonances) at z = 0, -1, -2, ~ ~ ~ . The asymp-
totic representation (Regge representation) is
the Stirling expansion. easy is a good approx-
imation to P for Izl -™as long as we exclude
a wedge Iargz I ( w-e. But easy does not con-
tain the poles at z = 0, -1, -2, ~ ~ ~; the approx-
imation breaks down if we penetrate the wedge.
Similarly the Regge asymptotic form Basy ls
a good approximation to the full amplitude B
for real s. Both amplitudes contain the reso-
nance circles. But if we go below the physical
axis the approximation breaks down, and Basy
does not contain the resonance poles. In a sense
we are in a situation similar to that of the phase-
shift analyst. We must stick to real energies,
and if we see a circle, we never know with ab-
solute certainty whether or not the extrapola-
tion to Ims ( 0 would lead to a pole.

We now make the comparison of our circles
with the established N* resonances more quan-
titative, and we clarify the meaning of the pa-
rameter E. The connection between B~ and the
partial waves fl~ is'

1 1—B =
4m l E+ M (l+ 2n)+ (l+ 2+ 2n)-n=O-

+
1

E-M (l+ 1+ 2n) — (l+ 1+ 2n)+
) . (3)

For our comparison we approximate the right-
hand side of this equation by the resonances, '
we leave out the low-energy tails of high-en-

ergy resonances, corresponding to n 10, and
we neglect the term with (E+ M) '. This re-
duces (3) to

1 1
4w l E-M (l+ 1)- (l+ 1)+

' (4)

1 cex K2 1

4r 3E M-
1 cex E2 1

4m 3 E-M

(5)

(6)

B, = "(f»20+f,«8). From Fig. 1 we read
off the widths MI' = (0.7, 0.8 GeV ) for l = (3, 4).
The corresponding experimental W* widths are
MI'= (0.44, 0.67 GeV ). The elasticities are
determined by the height of the circles in Fig.
1, and using P = 60.4 mb and (5) and (6) we ob-
tain MI'x = (0.12, 0.09 GeV ). This agrees well
with Rosenfeld's values MI'x = (0.13, 0.07 GeV') .

I et us compare our procedure with the N/D
scheme. ' Both times one uses as an input the
particles in the crossed channel (forces), in
the N/D scheme elementary p exchange, in
our case Regge p exchange. One computes the
contribution of this exchange to a definite par-
tial wave in the direct channel ai(s). In our
scheme this already produces the direct-chan-
nel resonances. In the N/D scheme this only
gives a real Born amplitude, and the addition-
al step of unitarization generates the resonance.
In contrast, the Regge p exchange amplitude
is automatically unitary, since it roughly rep-
resents the full amplitude. For the same rea-
son it automatically includes absorption.

We have shown (Horn et al. 7) how finite-en-
ergy sum rules (FESR) imply that direct-chan-
nel resonances are, on the average over the
low- and intermediate-energy region, already
contained in the Regge amplitude of the crossed
channel. The present Letter shows that the
equivalence between t-channel Regge poles and
s-channel resonances does not only hold on
the average, but even locally at each interme-
diate energy. (At low energies the equivalence
must break down; the resonances no longer
overlap. ) The equivalence BpRegge =BN*z es
suggested by Fig. 1 shows that the interference
model, ' which puts B BRegge+ Bres in the
intermediate energy region, involves severe

Note that the parameter l in B~ mainly corre-
sponds to an orbital angular momentum of (l + 1).
Using the established resonances, we obtain
from (4)
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double counting.
We do not know yet whether this equivalence

is a very general feature of strong interactions.
But we might mention one additional example,
K+P. Assume for the moment that the Pomer-
anchon is a special case with n~(t) —= 1, and

that for purposes of describing K+P we can lump

together all odd-signature meson trajectories
(p, ru, p) into one trajectory X, and all even
signature trajectories (A„f,f') into I'. We

further assume that X and F are exchange de-
generate. ' If we now partial-wave analyze the
Regge amplitudes, we find that the Pomeran-
chon does not generate resonance circles be-
cause it is purely imaginary. The meson sig-
nature factor in K+P factor is real, (+1-e t~~)x
-(-1-e ' ~)I = 2, and we cannot obtain reso-
nances. On the other hand, for K p the phase
of the Regge amplitude rotates, (+1-e '"o')~
+(-1-e t~&)y = -2e-i~&, the imaginary part
has zeros at z =0, -1, -2, ~ ~ -, and the real part
has zeros at n = ~ ~ ~, +—„-—„-&,~ ~ ~ . Therefore1 1

we expect that resonances will be generated
inK p.

The argument in the opposite direction is
well known. ' No resonances in K p (and pp,
KK) means that there are only direct forces,

but no exchange forces, in KK-PP (and PP -PP,
KF-KE). Therefore (p, ~, y) are "exchange
degenerate" with (A„f,f'), and the total cross
sections in K+p and K+n must be constant and

equal.
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The real and imaginary parts of the E2-M1 mixing ratio of the 73-keV transition in
Ir~93 have been determined in an arrangement that requires no correction for Faraday
rotation. The values Red=+0. 556+0.010 aud Imd=(+0. 6+2.1)&&10 3 result in a phase
angle between E2 and Ml of q = (+1.1+3.8) &&10 3, thus showing no evidence for T non-
conservation.

The CP nonconservation observed in the K,'
decay' led Bernstein, Feinberg, and Lee' to
conjecture that T invariance is violated in the
electromagnetic interaction of hadrons. As
a result of such a violation, nuclear matrix
elements would contain an admixture of a T-
odd amplitude. Under favorable conditions,
the fractional admixture could be as large as
10 3 to 10 ' and lead to effects observable in
interference terms, (f I I I i)(f I I.' li)*+c.c.,
of mixed gamma transitions. If T invariance
holds, the ratio of reduced matrix elements
is real; a complex mixing ratio indicates fail-

ure of T invariance. 4 Experiments so far have
been done on E2-M1 mixed transitions where
we write for the ratio of reduced matrix ele-
ments'

5= (f IIE2 Ili)/( f IIM1lli) = 15 Ie

A deviation of the phase angle g from 0 or m

indicates violation of T invariance. We have
performed a measurement of 6 for the 73-keV

transition in Ir' ' using the Mossbau-
er effect in a geometry that requires no cor-
rection for Faraday rotation. Our result, Re5
=+0.556+0.010, Im5= (+0.6+ 2.1) &&10 s, q = (+1.1


