DIRECT-CHANNEL RESONANCES FROM REGGE-POLE EXCHANGE*

Christoph Schmid

Lawrence Radiation Laboratory, University of California, Berkeley, California (Received 1 February 1968)

The ρ Regge amplitude for πN charge-exchange scattering with helicity flip is partialwave analyzed in the direct channel. This produces resonance circles on the Argand diagram corresponding to the prominent experimental N^* resonances.

We consider the ρ Regge amplitude for πN charge-exchange scattering with helicity flip B_{cex} . The usual parametrization and fit to the high-energy data, $p_T = 5.8 - 18.2 \text{ BeV}/c$, $is¹$

$$
B_{\text{cex}} = \beta \left(\frac{E}{E_0}\right)^{\alpha - 1} \frac{1 - e^{-i\pi\alpha}}{\sin \pi\alpha \Gamma(\alpha)},\tag{1}
$$

where $\alpha(t) = 0.57 + 1.08t$, and E is the laboratory energy of the π . Choosing $E_0 = 0.7$ BeV and $\beta(t)$ = const = 60.3 mb, one correctly fits the relative height of the near forward peak and the secondary peak. We now extrapolate this expression down to $p_L = 1.7$ BeV/c and check that it roughly fits $d\sigma/dt$.² Note in particular that the dip at $t \approx -0.6$ BeV² persists down to this energy and that the magnitudes of the nearforward peak and of the secondary peak are correctly given by the extrapolation of the highenergy fit.

Our partial-wave analysis of $B(E, z)$ in the direct channel gives

$$
B_{\tilde{l}}(E) = \frac{1}{2} \int_{-1}^{+1} dz \, P_{\tilde{l}}(z) B(E, z). \tag{2}
$$

FIG. 1. (a)-(c) The complex amplitude $B_l(\psi_L)$ for fixed *l* versus the laboratory momentum p_L . The numbers along the circles give the values of p_L^T . (d) $B_l(p_L)$ for fixed p_L vs l. The numbers along the circle give the values of *l*. For normalization we have put $\beta = 1$.

We integrate out to 180° , but we ignore the small backward peak coming from N exchange. Furthermore, if we want to use $\beta(t)$ in (1) only for those t values which have been measured, 3 $|t| \leq 3.0$ BeV², then we should stay below p_L \approx 2.0 BeV/c. On the other hand, we should stay above $p_L \approx 1.7$ BeV/c in order to have (1) give a rough fit to the $d\sigma/dt$ data. Actually, we let p_r vary beyond these limits and consider $1.0 \le p_L \le 2.4$ BeV/c.

Because $\beta(t)$ is constant it is irrelevant for most of the following considerations, and we put $\beta = 1$. The complex amplitude $B₁$, calculated from (1) and (2) , is shown in Figs. 1(a), 1(b), and 1(c) for fixed l vs p_L . Surprisingly, the $B₁$ describe circles on the Argand diagram. Such circles are usually associated with resonances. We read off the momentum p_L at which B_I reaches the top of the circle, and in Fig. 2 we plot these "resonance" momenta versus l and compare them with the experimental resonances (1920, 2190, 2420). In Fig. 1(d) we show B_l for fixed p_l as a function of l. Such a circle corresponds to an N^* Regge pole and indicates that the N^* resonances plotted in Fig. 2 actually belong to an N^* Regge trajectory.

Let us understand qualitatively why we obtain circles. (1) The zeros of ImB at $\alpha = 0, -1,$ -2, etc. and the double zeros of ReB at $\alpha = 0$, -2 , -4 , etc. are crucial. Consider, for exam-

FIG. 2. Chew-Frautschi plot. Curve A is the established πN resonances and curve B is the N^* resonances from our partial-wave analysis of the ρ Regge exchange. E_L = lab energy of $\pi \approx p_L$. E_L is linear in $(M_{\rm res})^2$.

ple, Fig. 1(d). For $p_L = 1.4$ we have $\alpha = -1.5$ at 180 $^{\circ}$. Therefore ImB contains two zeros in the physical region, $-1 \le z_s \le +1$, and the $l = 2$ wave becomes particularly strong. (2) The signature factor $(1-e^{-i\pi\alpha})$ induces the correct counterclockwise motion on the Argand diagram because the phase of $B(E, t)$ moves counterclockwise as $(-t)$ increases, and the partial-wave amplitude $B_I(E)$ includes larger $(-t)$ values at higher energies. (3) The arguments given in (1) and (2) are mainly relevant at intermediate energies, $p_L \leq 3.0$ BeV/c, since at high energies the secondary peak is so much suppressed that the presence of the nodes becomes less relevant.

Are the circles in Fig. 1 really resonances? The problem is that (1) and (2) are regular at $s = m_{\text{res}}^2 - i(m\Gamma)_{\text{res}}$; they do not contain poles corresponding to resonances. Let us give a mathematical analog. Take $\psi(z)$, the logarithmic derivative of the Γ function. It has poles (resonances) at $z = 0, -1, -2, \cdots$. The asymptotic representation (Regge representation) is the Stirling expansion. ψ_{asy} is a good approx
imation to ψ for $|z| \to \infty$ as long as we exclude imation to ψ for $|z| \to \infty$ as long as we exclude a wedge $|\arg z| < \pi-\epsilon$. But ψ_{asy} does not contain the poles at $z = 0, -1, -2, \dots$; the approximation breaks down if we penetrate the wedge. Similarly the Regge asymptotic form B_{asy} is a good approximation to the full amplitude B for real s. Both amplitudes contain the resonance circles. But if we go below the physical axis the approximation breaks down, and B_{asy} does not contain the resonance poles. In a sense we are in a situation similar to that of the phaseshift analyst. We must stick to real energies, and if we see a circle, we never know with absolute certainty whether or not the extrapolation to $\text{Im } s < 0$ would lead to a pole.

We now make the comparison of our circles with the established N^* resonances more quantitative, and we clarify the meaning of the parameter l. The connection between B_1 and the partial waves $f_{l\pm}$ is⁴

$$
\frac{1}{4\pi}B_{l} = \sum_{n=0}^{\infty} \left[\frac{1}{E+M} (f_{(l+2n)+} - f_{(l+2+2n)-}) + \frac{1}{E-M} (f_{(l+1+2n)-} - f_{(l+1+2n)+}) \right].
$$
 (3)

For our comparison we approximate the righthand side of this equation by the resonances,⁵ we leave out the low-energy tails of high-energy resonances, corresponding to $n \neq 0$, and we neglect the term with $(E+M)^{-1}$. This reduces (3) to

$$
\frac{1}{4\pi}B_{l} \approx \frac{1}{E-M}[f_{(l+1)-} - f_{(l+1)+}].
$$
\n(4)

Note that the parameter l in B_l mainly corresponds to an orbital angular momentum of $(l + 1)$. Using the established resonances, we obtain from (4)

$$
\frac{1}{4\pi}B_3 \csc \approx \frac{\sqrt{2}}{3}\frac{1}{E-M}f_{2190},\tag{5}
$$

$$
\frac{1}{4\pi}B_4 \csc \frac{\sqrt{2}}{3} \frac{1}{E - M} f_{2420},\tag{6}
$$

 $B_2^{\text{cex}} \approx \cdots (f_{1920} + f_{1688}).$ From Fig. 1 we read off the widths $MT = (0.7, 0.8 \text{ GeV}^2)$ for $l = (3, 4)$. The corresponding experimental N^* widths are $MT = (0.44, 0.67 \text{ GeV}^2)$. The elasticities are determined by the height of the circles in Fig. 1, and using $\beta = 60.4$ mb and (5) and (6) we obtain $M\Gamma x = (0.12, 0.09 \text{ GeV}^2)$. This agrees well with Rosenfeld's values $M\Gamma x = (0.13, 0.07 \text{ GeV}^2)$.

Let us compare our procedure with the N/D scheme.⁶ Both times one uses as an input the particles in the crossed channel (forces), in the N/D scheme elementary ρ exchange, in our case Regge ρ exchange. One computes the contribution of this exchange to a definite partial wave in the direct channel $a_1(s)$. In our scheme this already produces the direct-channel resonances. In the N/D scheme this only gives a real Born amplitude, and the additional step of unitarization generates the resonance. In contrast, the Regge ρ exchange amplitude is automatically unitary, since it roughly represents the full amplitude. For the same reason it automatically includes absorption.

We have shown (Horn et $al.^{7}$) how finite-energy sum rules (FESR) imply that direct-channel resonances are, on the average over the low- and intermediate-energy region, already contained in the Regge amplitude of the crossed channel. The present Letter shows that the equivalence between t -channel Regge poles and s-channel resonances does not only hold on the average, but even locally at each intermediate energy. (At low energies the equivalence must break down; the resonances no longer overlap.) The equivalence B_{ρ} Regge \approx BN*res suggested by Fig. 1 shows that the interference model,⁸ which puts $B \approx B_{\text{Regge}} + B_{\text{res}}$ in the intermediate energy region, involves severe

double counting.

We do not know yet whether this equivalence is a very general feature of strong interactions. But we might mention one additional example, $K^{\pm}p$. Assume for the moment that the Pomeranchon is a special case with $\alpha_{\mathcal{D}}(t) = 1$, and that for purposes of describing $K^{\pm}p$ we can lump together all odd-signature meson trajectories (ρ, ω, φ) into one trajectory X, and all even signature trajectories (A_2, f, f') into Y. We further assume that X and Y are exchange defurther assume that λ and λ are exchange de-
generate.⁹ If we now partial-wave analyze the Regge amplitudes, we find that the Pomeranchon does not generate resonance circles because it is purely imaginary. The meson signature factor in $K^+\rho$ factor is real, $(+1-e^{-i\pi\alpha})_X$ $-(-1-e^{-i\pi\alpha})_Y = 2$, and we cannot obtain resonances. On the other hand, for K^-p the phase of the Regge amplitude rotates, $(+1-e^{-i\pi\alpha})_X$ +(-1-e^{-i $\pi\alpha$})y = -2e^{-i $\pi\alpha$}, the imaginary part has zeros at $\alpha = 0, -1, -2, \cdots$, and the real part has zeros at $\alpha = \cdots, \pm \frac{1}{2}, \pm \frac{3}{2}, \cdots$. Therefore we expect that resonances will be generated in $K^- p$.

The argument in the opposite direction is well known.⁹ No resonances in $K^{\dagger}p$ (and pp, KK) means that there are only direct forces, but no exchange forces, in $K\overline{K} \rightarrow p\overline{p}$ (and $p\overline{p} \rightarrow p\overline{p}$, $K\overline{K}$ - $K\overline{K}$). Therefore (ρ , ω , φ) are "exchange degenerate" with (A_{2},f,f') , and the total cross sections in K^+p and K^+n must be constant and equal.

*This work was supported in part by the U. S. Atomic Energy Commission.

 1 F. Arbab and C. B. Chiu, Phys. Rev. 147, 1645 (1966); G. Höhler, J. Baacke, and G. Eisenbeiss, Phys. Letters 22, 203 (1966). Since Arbab and Chiu were interested only in $|t| < 1.4$ BeV², they put $1/\Gamma(\alpha)$ $\alpha \alpha(\alpha+1)$.

 2 A. S. Carroll et al., Phys. Rev. Letters 16, 288 (1966).

 3 A. V. Stirling et al., Phys. Letters 20, 75 (1966).

 $4V.$ Singh, Phys. Rev. 129, 1889 (1963); G. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, Phys. Rev. 106, 1337 (1957).

 5 A. H. Rosenfeld et al., Rev. Mod. Phys. 39, 1 (1967). 6 F. Zachariasen, Phys. Rev. Letters 7, 112, 268 (1961).

 ${}^{7}D$. Horn and C. Schmid, California Institute of Technology Report No. CALT-68-127 (unpublished); R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768 (1968).

 $V.$ Barger and M. Olsson, Phys. Rev. 151, 1123 (1966).

 ${}^{9}R.$ C. Arnold, Phys. Rev. Letters 14, 657 (1965).

TEST OF TIME-REVERSAL INVARIANCE USING THE MÖSSBAUER TRANSMISSION OF THE 73-keV TRANSITION IN Ir^{193} \dagger

M. Atac, B. Chrisman, P. Debrunner, and H. Frauenfelder Department of Physics, University of Illinois, Urbana, Illinois (Received 6 November 1967)

The real and imaginary parts of the E2-M1 mixing ratio of the 73-keV transition in $Ir¹⁹³$ have been determined in an arrangement that requires no correction for Faraday rotation. The values $\text{Re}\delta = +0.556 \pm 0.010$ and $\text{Im}\delta = (+0.6 \pm 2.1) \times 10^{-3}$ result in a phase angle between E2 and M1 of $\eta = (+1.1 \pm 3.8) \times 10^{-3}$, thus showing no evidence for T nonconservation.

The CP nonconservation observed in the K_2^0 decay' led Bernstein, Feinberg, and Lee' to conjecture that T invariance is violated in the electromagnetic interaction of hadrons. As a result of such a violation, nuclear matrix elements would contain an admixture of a Todd amplitude. Under favorable conditions, the fractional admixture could be as large as 10^{-3} to 10^{-2} and lead to effects observable in interference terms, $\langle f|L|i\rangle\langle f|L'|i\rangle^* + c.c.,$ of mixed gamma transitions. If T invariance holds, the ratio of reduced matrix elements is real³; a complex mixing ratio indicates failure of T invariance.⁴ Experiments so far have been done on $E2-M1$ mixed transitions where we write for the ratio of reduced matrix elements'

$$
\delta = \langle f \Vert E2 \Vert i \rangle / \langle f \Vert M1 \Vert i \rangle = |\delta| e^{i\eta}.
$$

A deviation of the phase angle η from 0 or π indicates violation of T invariance. We have performed a measurement of 6 for the 73-keV $\frac{1}{2}^+$ + $\frac{3}{2}^+$ transition in Ir¹⁹³ using the Mössbauer effect in a geometry that requires no correction for Faraday rotation. Our result, Re5 $=+0.556\pm0.010$, Im $\delta=(+0.6\pm2.1)\times10^{-3}$, $\eta=(+1.1)$