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The p Regge amplitude for 7N charge-exchange scattering with helicity flip is partial~
wave analyzed in the direct channel. This produces resonance circles on the Argand
diagram corresponding to the prominent experimental N* resonances.

We consider the p Regge amplitude for 7N
charge-exchange scattering with helicity flip
Bgex. The usual parametrization and fit to
the high-energy data, p; = 5.8-18.2 BeV/c,
ist
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where a(f)=0.57+ 1.08¢, and E is the labora-
tory energy of the 7. Choosing E,=0.7 BeV
and B(¢)=const=60.3 mb, one correctly fits
the relative height of the near forward peak
and the secondary peak. We now extrapolate
this expression down to p; =1.7 BeV/c and check
that it roughly fits do/dt.2 Note in particular
that the dip at ¢~ -0.6 BeV? persists down to
this energy and that the magnitudes of the near-
forward peak and of the secondary peak are
correctly given by the extrapolation of the high-
energy fit.

Our partial-wave analysis of B(E, z) in the
direct channel gives

B (E)= I dzP (2)B(E, 2). (2)
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We integrate out to 180°, but we ignore the small
backward peak coming from N exchange. Fur-
thermore, if we want to use 8(¢) in (1) only

for those ¢ values which have been measured, *
It]<3.0 BeV?, then we should stay below p

~2.0 BeV/c. On the other hand, we should stay
above py ~1.7 BeV/c in order to have (1) give

a rough fit to the do/dt data. Actually, we

let py vary beyond these limits and consider
1.0spyp <24 BeV/c.

Because £(f) is constant it is irrelevant for
most of the following considerations, and we
put B=1. The complex amplitude B I calculat-
ed from (1) and (2), is shown in Figs. 1(a),
1(b), and 1(c) for fixed / vs py. Surprisingly,
the Bj describe circles on the Argand diagram.
Such circles are usually associated with res-
onances. We read off the momentum p 1, at which
Bj reaches the top of the circle, and in Fig.

2 we plot these “resonance” momenta versus

! and compare them with the experimental res-
onances (1920, 2190, 2420). In Fig. 1(d) we
show Bj for fixed p; as a function of /. Such

a circle corresponds to an N* Regge pole and
indicates that the N* resonances plotted in Fig.
2 actually belong to an N* Regge trajectory.

Let us understand qualitatively why we obtain
circles. (1) The zeros of ImB at a =0, -1,

-2, etc. and the double zeros of ReB at =0,
-2, —4, etc. are crucial. Consider, for exam-

I T 1

I~ A B
- 2420 —
2190 —

1920 —

SIS ¢ R )
I

EL

GeV

FIG. 1. (a)-(c) The complex amplitude By(py,) for
fixed ! versus the laboratory momentum p; . The num-
bers along the circles give the values of py,. (d) Bj(py)
for fixed py vs I. The numbers along the circle give
the values of I. For normalization we have put 8 =1.

FIG. 2. Chew-Frautschi plot. Curve A is the estab-
lished mN resonances and curve B is the N* resonances
from our partial-wave analysis of the p Regge ex-
change. Ej =1lab energy of r=py,. Ej, is linear in
(Mres)?.
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ple, Fig. 1(d). For py=1.4 we have a=-1.5

at 180°. Therefore ImB contains two zeros

in the physical region, -1<zg <+1, and the
1=2 wave becomes particularly strong. (2) The
signature factor (1-e—¢7a) induces the correct
counterclockwise motion on the Argand diagram
because the phase of B(E, {) moves counterclock-
wise as (~t) increases, and the partial-wave
amplitude Bl(E) includes larger (-f) values at
higher energies. (3) The arguments given in

(1) and (2) are mainly relevant at intermedi-
ate energies, p; <3.0 BeV/c, since at high
energies the secondary peak is so much sup-
pressed that the presence of the nodes becomes
less relevant.

Are the circles in Fig. 1 really resonances?
The problem is that (1) and (2) are regular at
s =mpeg®~i(mI)reg; they do not contain poles
corresponding to resonances. Let us give a
mathematical analog. Take ¥(z), the logarith-
mic derivative of the I" function. It has poles
(resonances) at 2=0, =1, =2, -+-. The asymp-
totic representation (Regge representation) is
the Stirling expansion. d’asy is a good approx-
imation to ¢ for Izl -« as long as we exclude
a wedge largzl <m—e€. But Yasy does not con-
tain the poles at z=0, =1, =2, «++; the approx-
imation breaks down if we penetrate the wedge.
Similarly the Regge asymptotic form Basy is
a good approximation to the full amplitude B
for real s. Both amplitudes contain the reso-
nance circles. But if we go below the physical
axis the approximation breaks down, and Bagy
does not contain the resonance poles. In a sense
we are in a situation similar to that of the phase-
shift analyst. We must stick to real energies,
and if we see a circle, we never know with ab-
solute certainty whether or not the extrapola-
tion to Ims < 0 would lead to a pole.

We now make the comparison of our circles
with the established N* resonances more quan-
titative, and we clarify the meaning of the pa-
rameter /. The connection between B; and the
partial waves f7, is*

1
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For our comparison we approximate the right-
hand side of this equation by the resonances,®
we leave out the low-energy tails of high-en-
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ergy resonances, corresponding ton #0, and
we neglect the term with (E + M)™!. This re-
duces (3) to

1, .1 -
4_7731~E—M[f(1+ 1)- f(l+ 1) ) )

Note that the parameter ! in B; mainly corre-
sponds to an orbital angular momentum of (I +1).
Using the established resonances, we obtain
from (4)

1 cex _v2_ 1

E 3 3 E_Mfzxso, (5)
1 _cex V2 1
ar e z?E_Mfz‘lzo; (6)

B,C®X =~ -(f 900+ f1e8s)- From Fig. 1 we read
off the widths MI"'=(0.7,0.8 GeV?) for [=(3, 4).
The corresponding experimental N* widths are
MTI'=(0.44, 0.67 GeV?). The elasticities are
determined by the height of the circles in Fig.
1, and using B =60.4 mb and (5) and (6) we ob-
tain MT'x=(0.12,0.09 GeV?). This agrees well
with Rosenfeld’s values MI'x=(0.13,0.07 GeV?).

Let us compare our procedure with the N/D
scheme.® Both times one uses as an input the
particles in the crossed channel (forces), in
the N/D scheme elementary p exchange, in
our case Regge p exchange. One computes the
contribution of this exchange to a definite par-
tial wave in the direct channel a;(s). In our
scheme this already produces the direct-chan-
nel resonances. Inthe N/D scheme this only
gives a real Born amplitude, and the addition-
al step of unitarization generates the resonance.
In contrast, the Regge p exchange amplitude
is automatically unitary, since it roughly rep-
resents the full amplitude. For the same rea-
son it automatically includes absorption.

We have shown (Horn et al.”) how finite-en-
ergy sum rules (FESR) imply that direct-chan-
nel resonances are, on the average over the
low- and intermediate-energy region, already
contained in the Regge amplitude of the crossed
channel. The present Letter shows that the
equivalence between f-channel Regge poles and
s-channel resonances does not only hold on
the average, but even locally at each interme-
diate energy. (At low energies the equivalence
must break down; the resonances no longer
overlap.) The equivalence BpRegge ~BN*res
suggested by Fig. 1 shows that the interference
model,® which puts B~BRegge* Bres in the
intermediate energy region, involves severe



VoLuME 20, NUMBER 13

PHYSICAL REVIEW LETTERS

25 MARCH 1968

double counting.

We do not know yet whether this equivalence
is a very general feature of strong interactions.
But we might mention one additional example,
K*p. Assume for the moment that the Pomer-
anchon is a special case with ap(f)=1, and
that for purposes of describing K *p we can lump
together all odd-signature meson trajectories
(¢, w, @) into one trajectory X, and all even
signature trajectories (4,, f,f’) into Y. We
further assume that X and Y are exchange de-
generate.® If we now partial-wave analyze the
Regge amplitudes, we find that the Pomeran-
chon does not generate resonance circles be-
cause it is purely imaginary. The meson sig-
nature factor in K*p factor is real, (+1-e ™%y
—(-1-e=tTQ)y =2  and we cannot obtain reso-
nances. On the other hand, for K~p the phase
of the Regge amplitude rotates, (+1-¢~7®)y
+(=1-e~tTQ)y = —2¢—iTQ, the imaginary part
has zeros at ¢ =0, -1, =2, -+, and the real part
has zeros at @=+++,+}, =1, =3, +++. Therefore
we expect that resonances will be generated
in K™p.

The argument in the opposite direction is
well known.® No resonances in K'p (and b,

KK) means that there are only direct forces,

but no exchange forces, in KK —pp (and pp = pp,
KK ~KK). Therefore (p, w, ¢) are “exchange
degenerate” with (4,,f,f’), and the total cross
sections in K*p and K*n must be constant and
equal.

*This work was supported in part by the U. S. Atomic
Energy Commission.
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The real and imaginary parts of the E2-M 1 mixing ratio of the 73-keV transition in
Ir!% have been determined in an arrangement that requires no correction for Faraday
rotation. The values Red=+0.556+0.010 and Imd = (+0.6£2.1)X 1073 result in a phase
angle between E2 and M1 of =(+1.1+3,8)X 1073, thus showing no evidence for T non-

conservation.

The CP nonconservation observed in the K,°
decay! led Bernstein, Feinberg, and Lee? to
conjecture that 7 invariance is violated in the
electromagnetic interaction of hadrons. As
a result of such a violation, nuclear matrix
elements would contain an admixture of a 7'-
odd amplitude. Under favorable conditions,
the fractional admixture could be as large as
1073 to 10~2 and lead to effects observable in
interference terms, (fILI{){fIL’|i)*+c.c.,
of mixed gamma transitions. If 7 invariance
holds, the ratio of reduced matrix elements
is real®; a complex mixing ratio indicates fail-

ure of T invariance.* Experiments so far have
been done on E2-M1 mixed transitions where
we write for the ratio of reduced matrix ele-
ments®

5= (B2 /(FIMLID)= 51",

A deviation of the phase angle 5 from 0 or 7
indicates violation of 7 invariance. We have
performed a measurement of & for the 73-keV
1* ~ 2% transition in Ir'®® using the M&ssbau-
er effect in a geometry that requires no cor-
rection for Faraday rotation. Our result, Red

=+0.556+0.010, Imd=(+0.6+2.1)x1073, n=(+1.1
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