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By general arguments it is shown that the dominant contribution to the magnetic resis-
tivity pmag of a metal is due to the short-range spin fiuctuations and hence that dpmag/
dT should, in the static approximation, vary like the magnetic specific heat.

Recent experiments by Craig et al. ' on the
electrical resistivity of Ni near its Curie point
have encouraged us to re-examine the theory
of the resistive anomaly at the critical point
of a metallic ferromagnet or antiferromagnet.
We have concluded that existing theoretical
treatments of this resistive anomaly, such
as that of de Gennes and Friedel, ' will often
give qualitatively incorrect results. These
treatments have predicted a singularity (cusp-
like peak) in the resistivity supposedly aris-
ing from the long-range fluctuations of the mag-
netization near the critical point. In the fol-
lowing we argue that it is actually the short-
range fluctuations which make the dominant
contribution to the temperature-dependent part
of the resistivity, so that one should see a very
different kind of resistive anomaly.

Our arguments can be stated most clearly
in terms of the model used by de Gennes and
Friedel, ' namely a lattice of magnetic ions
with spine 5; at sites R, and a single band of
conduction electrons. This model seems to
be rather unrealistic in the case of Ni; but our
qualitative conclusions are more general. The
interaction of a conduction electron with the
array of spins will be described simply by

K . = G .5(r-R.)5.electron ion i i i e'

where r is the position of the electron and Re
its spin. We shall not worry about the fact
that the magnetic electrons are not very well
localized in many metals (e.g., Ni), and that
they should then not be distinguished sharply
from conduction electrons. Finally, in com-
puting the scattering of a conduction electron
from the magnetic system near its critical point,
we shall assume that the spin fluctuations are
so slow that we need not account for inelastic-
ity. In other words, the amount of energy that
an electron exchanges in a spin-flip scatter-

cr, =(4v) '(mG/8')'S(S+1),

where cr(8) is the differential scattering cross
section per magnetic spin, and 8 is the scat-
tering angle. If we use first-order Born ap-
proximation, sum over all final states, and
perform a thermodynamic average over the
initial states, we obtain the familiar formula,

o(8) = (oo/4m)+. r(R.) exp(iK ~ R .).

(4)

Here 5K is the momentum transfer and

r(R., T) = [(5. 5 )-(5.) ~ (5 )]/s(s+1)

is the static spin-spin correlation function for
two spins separated by a distance R~.

De Gennes and Friedel complete their cal-
culation by evaluating I"(R, T) in what amounts
to the Ornstein-Zernike approximation. ' By

ing will be neglected so that all the relevant
properties of the magnetic system may be de-
scribed by an equal-time spin-spin correlation
function. (Owing to the "thermodynamic slow-
ing down" of critical fluctuations this is plaus-
ible for low wave numbers k, but it may bear
further investigation for the higher values of
k which we claim are also important. )

The calculation of de Gennes and Friedel goes
as follows. The resistivity due to spin scat-
tering is

p = m/ne27,

where n, m, and 7 are, respectively, the den-
sity of conduction electrons, their effective
mass at the Fermi surface, and the relaxation
time associated with scattering from spin fluc-
tuations. If 7 p is the relaxation time at tem-
peratures so high that the spin-spin correla-
tions are negligible, we have

~=
~

—
IJ o(8)(1-cos8) sin8d 8,
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~= 5 v f(R )P(R )r(R ),
s=p

(8)

tacitly assuming the approximation is valid
for all R and T independently, one finds that
7/r„and hence p, has a singularity of the form'

p(T) =p b-(tl Lnltl ', t=(T/T )-1,
c C

with b & 0, which means that the resistivity
should have a finite, upward pointing cusp at
Tc. Qualitatively similar results can be de-
rived using modern extensions of the Ornstein-
Zernike formula for the long-range part of
the correlations' and by again assuming uni-
form validity in R and T.4 The finite maximum
at Tc predicted by all such treatments is in
striking disagreement with the experimental
results for Ni which exhibit a monotonic in-
crease of p with T through Tc, while dp/dT
has a sharp peak at Tc.

As our first point of criticism of the above
theory, we observe that the sum in (5) cannot
realistically be allowed to extend undamped
to pairs of spins with indefinitely large sepa-
rations Rt as is, in principle, supposed in the
derivation of (7). The contribution to (5) from
a single term in the sum represents the inter-
ference in the scattering of an electron wave
incident upon two spins separated by H;. Even
if these spins are strongly correlated, howev-
er, they will not scatter coherently if Ri is
appreciably greater than the electron mean
free path l. Since l remains finite through the
Curie point, ' we conclude that it is unphysical
to suppose that the detailed form of the resis-
tance anomaly is determined solely by the long-
range part of I'(R). Rather, I (R) should be
damped by some factor, say p(R), which decreas-
es monotonically from unity on a scale fixed
by l.'

Next, and more generally, insert (5) into
(3) and integrate over the scattering angle 8.
The resulting lattice sum is convergent, so
that p remains finite at Tc, even without a damp-
ing factor. It again follows that the behavior
of p(T) cannot depend on the long-range part
of I (R) alone. To see this more explicitly,
we average over orientations of the momentum
transfer K relative to the crystal axes and as-
sume a spherical Fermi surface of radius kF
so that 2n(l-cos8) sin8d8=~kF 'K'dE. If Rs
is the radius of the sth shell of spins surround-
ing the site R =0 and vs is the number of spins
in that shell, we thus find that

where f(R) is the decaying oscillatory function

I.2kF sinKR K'dK
f(R) =)

0 R 4k

1 d' cos2k+-Li
4k 'R dR'

Since f(0) =1, the term for Rs = 0 in (8) (the
incoherent scattering) yields

(T /~) = I (o) = I- i(5) p/s(s+ I).
s

(10)

~=r(0, T)+(8k 4) 'f Ff(E-, T)E'dE, (12)

f'(K, T) = 5, I'(R., T)p(R.) exp(iK ~ R.). (13)
R 0

Z 2 Z

Even at T the factor E~ in (12) will overwhelm
the singularity'i" f'(K, Tc) -1/E2 '8; evident-
ly the resistive anomaly will be determined
mainly by the temperature dependence of I (K, T)

This makes no contribution to dp/d T above Tc,
but below Tc the decrease of the resistivity
will be proportional to [M,(T)]', the square
of the spontaneous magnetization. Most prob-
ably this will determine the dominant singular-
ity in dp/dT below Tc as it)~

For T& Tc, on the other hand, dp/dT must
be wholly determined by the short-range cor-
relations, in particular, by the temperature
dependence of r(Rs, T) for R~ &0. For any fixed
R~ we now argue quite generally that I (R~, T)
must have the same dominant singularity at
Tc as does the magnetic energy'&' which is giv-
en (for T& T ) by

U(T) = -P Z(R.)(5 5.)
j j 0 j

=- p v z(R ) r(R, T),
s=1

where Z(R) is the usual Heisenberg exchange
energy. The relations (8) and (11) are obvious-
ly very similar in that both are convergent
sums of terms containing the same tempera-
ture-dependent factors r(Rs, T). We conclude,
therefore, that p(T) and U(T) should have the
same kind of singularity above T, and hence
that dp/dT should vary as tt( ~, that is like
the magnetic specific heat. '~' The experiments
on Ni seem consistent with this conclusion. "

A more detailed picture of the anomaly can
be obtained by reformulating (8)-(10) as
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for values of E near 2kF. We believe that this
conclusion will pertain also to itinerant-elec-
tron models of ferromagnets with I being sim-
ply the Fourier transform of the spin-density
correlation function.

The function f'(K, T) with p —= 1 has recently
been studied extensively for the Ising model";
there is also relevant evidence from neutron
scattering experiments, specifically on iron. "
The qualitative behavior of I (K, T) implied by
these studies is shown in Fig. 1. At fixed E
the transform f' displays a rounded maximum
above T located by ~(Tm~) =E, where the
inverse range of correlation x(T) vanishes as
[t ) . This maximum is sharper and more pro-

nounced for the lower values of E. At T~ a
singularity of the form )t) ~ sgn{t}occurs. '

The sign of this singularity, and hence, on
performing the integration in (12), the sign
of the anomaly proportional to ]t )

~ in dp/dT,
can be confirmed by computing the transform
(13) on the basis of the scaling hypothesis'&a~"

r(R, T) =D(xR)/R " (Rg0).

The long-range (Ornstein-Zernike-like) decay
is ensured by (i) D(x)-x% asx-~; but to
reproduce the (positive) specific-heat anoma-
ly via (11) one must have (ii) D(x) =Dc-D,x(
&&sgn{tI Dp /~+ ~-~ ~ as x-0 with D, &0.'~"
If (ii) is inserted into (13) and the Fourier sum
is approximated by an integral, one obtains
from (12) an explicit expansion for 7,/7. in which
the coefficient of the term (t[ ~ sgn{tj is pos-
itive provided (a) that kFl is sufficiently large, "
and (b) that (I+q) '& v/(I-o. ) &(3+q) '. [Con-
dition (b) is satisfied by typical experimental
and theoretical exponent values. ']

This expansion is valid only for v(T)/kF &1.
For large values of (t ) (and ~), or smaller
values of kF, one finds, as in Fig. 1, a more
or less rounded peak in the magnetic resistiv-
ity above T~. To compare with experimental-
ly observed resistivities one must finally add
a smoothly increasing contribution due to lat-
tice scattering. For large AF the rounded peak
above T~ will then disappear into the lattice
background, which apparently is what happens
in Ni. For smaller kF, however, the peak will
appear as an anomaly reminiscent of, but an-
alytically quite different from, that predicted
by de Gennes and Friedel.

The theory outlined here should be applica-
ble to a wide variety of resistive anomalies
which are known to occur in the rare-earth

T, T

FIG. 1. Qualitative behavior of I'(K,T) for various
values of K relative to the lattice spacing a. For K=O,
the curve represents the reduced differential suscepti-
bility with its characteristic divergence at T~.

metals. "~ We would like to encourage more
accurate measurements of these anomalies
with, if possible, accurate neutron-scattering
and specific-heat studies of the same samples.
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This Letter reports measurements of sec-
ond-harmonic generation of light at the bound-

ary of alkali halides and glasses along with
further measurements of some semiconductors
and metals. The second-harmonic power re-
flected from the surface of transparent mate-
rials was found to be lower by several orders
of magnitude than that generated at semicon-
ductor and metallic surfaces. ' Second-har-
monic generation was also studied in transmis-
sion through thin platelets of glass and LiF.

The second-harmonic generation in media
with inversion symmetry has been discussed
by several authors. ' ' For centrosymmetric
isotropic medium, the lowest order contribu-
tion to the nonlinear polarization at the second-
harmonic frequency 2&@, denoted by Pf(2&v),
may be given phenomenologically as

P.(2(u) = (a-p)E. ((u)v.E (cu)+ pE ((u)v. E.((u)

The coefficients are expected to be of the or-
der of 10 "esu for transparent materials, '
about 10 "esu in semiconductors, and 10
esu in metals. All materials will be assumed
to be isotropic, as no signals due to the addi-
tional terms present with cubic crystals have
been observed in this or previous experiments. '

For a transverse electromagnetic wave, the
first two terms in Eq. (1) are zero in the bulk;
the last term gives rise to a longitudinal po-
larization, and so it is observable only in ex-
periments involving a discontinuity, such as

the boundary of a medium. This bulk term
alone cannot explain the observed effects, and
a proper account must include phenomena as-
sociated with the surface itself. To this end,
the model of Bloembergen' ' will be used.
According to this model, the nonlinear surface
effects arise primarily from the rapid varia-
tion of the normal component of the electric
field over a thin layer at the boundary of the
medium. Assuming that the thin layer has the
same dielectric constant as that of the bulk,
this model predicts that the surface effects
can be described in terms of a nonlinear po-
larization equivalent to the o and P terms in
Eq. (1). For layers thin compared with a wave-
length, the corresponding second-harmonic
amplitude depends on the total change of the
normal component across the layer and is in-
dependent of the detailed variation within the
layer.

An alternative model to describe the surface
effects is to assume that the surface is piezo-
electric. ' General symmetry considerations
show that the only new term distinguishable from
the previous model is of the form Pnormal(2u)
~ EjEj . A slightly different angular dependence
not detectable in this experiment would follow
from a term of this form.

The coefficients o., P, and y are generally
complex, but are real in a lossless medium.
These coefficients can be determined by mea-
suring the power and polarization of the sec-
ond harmonic produced with the fundamental
beam polarized at 45 and 90 with respect to
the plane of incidence. Using Eq. (1) and as-


