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WAlthough the use of stress potential would not be ap-
propriate in some cases, such a strict discussion
seems not necessary to the present purpose.
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This Letter reports the first experimental
evidence of the existence of an electric field
in a type-I superconductor in the presence of
a quasistatic magnetic field. This effect was
predicted by London,! who remarked that in
the hydrodynamic model of a charged super-
fluid, under quasi steady-state conditions (8v/
8t=0), the equation of motion predicts an elec-
tric field

E=(1/e)Vimv? (1)

(v is the velocity of the electron superfluid),
which corresponds to the Bernouilli pressure
of an uncharged fluid. To obtain the voltage
between two points A and B inside the super-
conductor, the electric field (1) must be inte-
grated along a line going from A to B:
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Let us apply this result to two different situ-
ations:

(A) Let us consider a superconducting slab
in a transverse magnetic field with an exter-
nal current I flowing through it [Fig. 1(a)].
This is the conventional geometry used to mea-
sure the Hall effect in normal metals. This
current will flow in the surface layer like the
Meissner current Jp7, and a simple analysis
shows that the electric field E of Eq. (1) inte-
grated across the upper (J=dJp7+J7) and low-
er (J=J M—J T) surfaces corresponds to a Hall
voltage (at 0°K) of

V= ZAJTH/ne, (2)

where n is the total density of electrons.

In type-I superconductors, for which London’s
Eq. (1) is replaced by a nonlocal relation be-
tween current and magnetic field, we might
expect a modification of Eq. (1). However,
an electric field must still exist, as we can
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see by considering the origin of the Laplace
force on the lattice. The total force exerted
on the superconducting wire is the Laplace
force I7TH per unit length. This force must

be transmitted from the superfluid electrons
to the lattice; since there is no momentum trans-
fer from the superconducting electrons, the
origin of the Laplace force is the action of the
Hall electric field on the positive ions. If we
suppose that the current I7 flows uniformly

in two surface layers of thickness A, the above
argument gives the value

VA—V = VH— ZAJTH/nIe
for the Hall voltage, where nje is the total
charge density of ions. This result shows that
the Hall constant is R=1/nje, that is to say,
R=1/ne, where ne is the total charge densi-

ty of electrons which is independent of temper-
ature (n =ny, +ng, where ny, is the number of
normal electrons and g is the number of su-
per electrons per cm3).

(B) Let us now consider an isolated super-
conducting sample in an external magnetic field,
for example, a cylinder with its axis perpen-
dicular to the field [Fig. 1(b)]. The voltage
between points A and B is then' (London effect)
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FIG. 1. Cross section of sample. (a) Hall case.
(b) London case.
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where H, is the field at the surface of the sam-
ple at point A.

Several attempts have been made to measure
this electric field. Lewis? measured the volt-
age between the pole and equator of a vanadi-
um sphere placed in an external modulated field
(case 2), and Jaggi® measured the “self Hall
effect” of lead with an external modulated cur-
rent. Both Lewis and Jaggi used direct Ohm-
ic contacts in their experiments and found a
null result. In that case the voltmeter measures
the difference in electrochemical potential be-
tween the two contacts. But in the supercon-
ducting state, the electrochemical potential
1=+ zmvgt-eV (i, being the chemical po-
tential and V the electrostatic potential) is the
same everywhere, and this explains the neg-
ative result obtained by the above authors.
This proves also that a contact potential builds
up to compensate exactly the Hall voltage.*

A well-known method for measuring contact
potentials is the classical Kelvin® method us-
ing a vibrating capacitor. We establish a ca-
pacitive coupling between the voltmeter and
the superconductor and employ a dynamic mea-
surement method, where the external magnet-
ic field is modulated instead of the capacitor.
We place a cylindrical sample in an alternat-
ing magnetic field (w=413 Hz) normal to its
axis [Fig. 1(b)] and measure the contact poten-
tial at point A. Thus we have only studied case
two experimentally. For a magnetic field of
the form Hoe]wt, we expect a voltage propor-
tional to Hozezj“)t, and thus we detect the sec-
ond harmonic, whose amplitude should be pro-
portional to H,2. Care must be taken to elim-
inate induction signals at frequency w which
could saturate the synchronous detection am-
plifiers. We accomplish this by using a filter
which passes the signal at 2w and not that at
w. A block diagram of the experimental set-
up is shown in Fig. 2.

FIG. 2. Schematic block diagram of experiment. A,
power amplifier 75 W (MacIntosh); D, frequency dou-
bler (413 Hz); F, filter 7=10"%; L, lock-in amplifier
(H.R. 8); and H.C., Helmholtz coils.

In the case of an alternating magnetic field
at the present frequency, the inertia term gives
rise to a voltage of the order of 10~'* V, which
is indeed negligible with respect to the London
voltage.

In Fig. 3 the experimental results for lead
at 4.2°K show that the amplitude of the signal
at 2w is indeed linear in Hy?. The signal dimin-
ishes rapidly at about 280 G (applied field) for
lead, where the sample enters the intermedi-
ate state. The field at the surface of the sam-
ple is then 560 G in this particular geometry.
The eddy currents in the normal regions heat
the sample and the whole specimen is driven
into the normal state.

Fitting our experimental result in the expres-
sion (3) for the London voltage, we obtain A
~380 A for lead, which is somewhat smaller
than the usual value of A,=390 A. The preci-
sion of our experimental results is about 10%,
and it is impossible to detect the variation of
A with H,. The length of our capacitor is much
smaller than the length of circumference of
our cylindrical sample, and thus we measure
the exact value of V1,. I this is not the case,
we measure a mean value of V,cos?6.

The same experiment has been performed
with Nb and Pbln below H.1, and the results
are quite similar.

In summary, we have verified London’s pre-
diction of the existence of an electric field in
a superconductor. The corresponding voltage
is however canceled by a contact potential.
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FIG. 3. Curve I is the “London” voltage plotted ver-
sus the normalized magnetic field k= 2H/H, with two
direct Ohmic contacts. Curve II is the London voltage
versus normalized magnetic field » with a capacitive
contact. Curve III is the London voltage versus re.
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We are presently studying the same phenom-
enon in the Hall-effect geometry (previously
referred to as case A), but the signal is quite
small (107 V cm?/A) and consequently diffi-
cult to detect.
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sistance in preparing the manuscript.
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The electrical conductivity of potassium chloride is discussed within the framework
of a four-defect model of the crystal. The four defects are mobile anion and cation va-
cancies and immobile divalent cation impurities and divalent cation impurity-cation va-
cancy complexes. The Teltow formulation of the four-defect model fails to describe
precisely the measured electrical conductivity of KCl over the entire intrinsic and ex-

trinsic range.

The electrical conductivity of alkali-halide
crystals has usually been discussed in terms
of a four-defect model of an ionic crystal, the
four defects being anion vacancies, cation va-
cancies, divalent impurity cations, and diva-
lent cation impurity-cation vacancy complex-
es. In the Teltow formulation?® of the four-de-
fect model the defects are treated as noninter-
acting particles, the divalent cation impurities
and cation vacancies are considered as com-
plexes only when they are on nearest-neighbor
lattice sites, and the mobility of the ions is
given by the product of a jump-attempt frequen-
cy (v) and a Boltzmann factor. It has been cus-
tomary in the analysis of conductivity data to
extract values for the various parameters,
assumed to be temperature independent in the
Teltow formulation, i.e., the entropy (s) and
enthalpy () of Schottky-defect formation, the
entropies (As.) and enthalpies (A%y) of vacan-
cy motion, and the binding energy of the com-
plexes. It is our intent to show the limitations
of the Teltow formulas for KCI.

In the intrinsic region where the effect of
the impurity content is negligible, the Teltow
expression for the conductivity reduces to the
sum of two exponentials,

Sl ) s 5]
oT = A l:eXp<S+—kT +exp S_ kT ) (1)
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where N is the number of cations per unit vol-
ume, ¢ is the lattice parameter, e is the elec-
tronic charge, Si=(3s+As.)/k and Wy =3h+Ahy.
A test of the Teltew formulation is to see if

a sum of two exponentials will describe the
intrinsic conductivity and gives results consis-
tent with analyses of conductivity over a wid-

er temperature range which includes the ex-
trinsic region.

The electrical conductivity of “pure” Harshaw
KCI1 crystals has been measured from 480 to
750°C using standard ac bridge techniques at
1 kHz and a furnace design which permits the
taking of measurements every 3° or so. A high-
er density of data points than reported for oth-
er experiments of this type has thus been ob-
tained. In Fig. 1 the data from our measure-
ments of the conductivity of Harshaw KCI are
shown by open circles and the data from the
measurements of the conductivity of zone-re-
fined KC1 (data of Ref. 2, run No. 9) are shown
by solid squares. The precision of our mea-
surements is estimated to be +1% for the con-
ductivity and £0.5°C for the temperature. The
least-squares computer fit of Eq. (1) with the
59 experimental data points for T >560°C is
shown by the solid line in Fig. 1.

Two difficulties are encountered in the use
of Eq. (1) to analyze conductivity data. One
is the determination of the temperature at which



