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We suggest that fermion Regge trajectories will be strongly asymmetric functions of
w (mass) for w1 GeV, in contrast to a recent suggestion of Barger and Cline. This
suggestion fits the observed spectrum of nN resonances and would also be predicted by

conventional low~energy mN dynamics.

On the basis of the MacDowell symmetry of
meson-baryon scattering amplitudes,! one ex-
pects a fermion Regge trajectory to be analyt-
ic in w (mass), rather than in s (mass squared)
as for bosons?; positive values of w correspond
(conventionally) to even-parity states and neg-
ative values to odd-parity states. As a first
approximation, one would then expect the tra-
jectories to be linear in w:

aw)=a+bw. (1)

Since only positive half-integral values of o
can correspond to physical particles, a trajec-
tory would then describe either only odd- or
only even-parity states.

However, if a Chew-Frautschi plot? is made
of the known and conjectured 7N resonances,®
three sets of even-parity resonances are seen
to lie on straight lines in the variable s =w?,
rather than in w. This then implies for the
positive w values involved approximately par-
abolic trajectories:

aw)=2a+cw? (2)

If this form is extrapolated to negative w, this
in turn implies the existence of corresponding
odd-parity resonances of the same mass, and
recently Barger and Cline* have pointed out
that some of these may appear in the most re-
cent phase-shift analyses.?

This scheme has, however, two striking fail-
ures: (i) the nonexistence of a stable S,, par-
ticle as partner of the nucleon and (ii) the non-
existence of a low-energy D;; resonance as
partner of the P,, (1236). Barger and Cline
explain these failures by postulating that the
corresponding Regge residues vanish at just
the relevant energies. In this note I want to
put forward a more natural explanation, and
also to draw attention to the importance of the
whole question.

First, it will be shown that o (w) cannot be
an exactly even function of w (i.e., a function
of s alone) if the usual threshold behavior is
to be satisfied.? Indeed, just above w =/ +pu)

=w, (the 7N threshold), one has for the N tra-
jectories

'2l(w°)+1‘~(w—w0)|a(wo)+1* (3)

Ima@w)~q
whereas just below w = —w, one has

qszl(—wo)+1; . (w+w0)*a(—w°)'. (@)

Ima W)~
(Here [ denotes the orbital angular momentum
corresponding to spin o, so I=a+ 5 for w2 0;
for the A trajectory, I=a+%.) Hence, if we
start off by assuming that a(w)=a(-w), (3)
and (4) lead to a contradiction.

Having realized this, one feels free to con-
sider the possibility that quite large deviations
from the parabolic form (2) might occur. Then
the nonexistence of low-energy S,, and D43 ob-
jects leads one to postulate that the trajecto-
ries are considerably depressed for w<0, so
that the S,, and Dy, objects have fairly high en-
ergies. It is in fact quite easy to find a suit-
able pair of resonances, and we have plotted
modified trajectories for the Na, 8 and A
cases in Figs. 1 and 2.
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FIG. 1. Conjectured N, ,B trajectory. The dashed
line is conjectured trajectory of Barger and Cline (Ref.
4). The dash-dotted line indicates the experimental
slope and intercept at w =0 (Ref. 5). The full lines are
our conjectured leading and daughter trajectories.
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FIG. 2. Conjectured &y ¢ trajectory.

These trajectories are partially supported
by independent experimental evidence concern-
ing high-energy backward 7N scattering. By
fitting the diffraction peak with Regge-pole
terms, positions and slopes of the trajectories
at w =0 have recently been estimated,® and we
show them in Figs. 1 and 2. The slopes are
smaller than those estimated from the Chew-
Frautschi plot, which is just what we need.

As no reliable determination of the coefficient
of w [Eq. (1)] has yet been published, Figs.

1 and 2 have been drawn as if it were zero (i.e.,
no cusp at w =0). This coefficient could be quite
large without affecting the usual interpretation*
of the backward dip because of the small val-
ue of w at this dip.

In their work, Barger and Cline* have also
assigned further resonances to “daughter” tra-
jectories and this is still possible in the pres-
ent scheme as indicated in Fig. 1. Of course,
the present scheme differs in assigning the
lowest S;, and Dgq states to the leading trajec-
tory rather than the first daughter.

In Figs. 1 and 2 the trajectories have not been
plotted in the vicinity of the negative parity
thresholds because their detailed form here
is not clear. One has to satisfy the following
requirements: (i) For small Ima, Ima(d Rea/
dw)™'>0 on top side of the cuts®; (ii) if Rea
remains finite at threshold, Ima satisfies the
threshold behavior (4); (iii) the function « is
analytic except for the cuts; and (iv) the tra-
jectories Rea are depressed (relative to their
parabolic large-w form) around the threshold,
not raised. These requirements are quite dif-
ficult to satisfy simultaneously, and the ques-
tion deserves further consideration.

Finally, let us examine the compatibility of
the postulated trajectories with low-energy
7N dynamics. Although single-channel N/D
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The lines have the same significance as in Fig. 1.

calculations are not quantitatively reliable,

they do predict the P,, (nucleon) and P, (1236)
particles in the sense that a first sheet or low-
energy second-sheet pole always appears.’

(The reason for this is that theé left-hand cuts
coming from N and p exchange are so large

for these partial waves that unitarity is violat-
ed unless there is a particle pole to cancel them;
this conclusion is not affected by possible CDD
pole terms.”) In contrast, the left-hand cuts
for the remaining S, P, and D waves are small®
and no low-energy resonances are expected

in these waves unless CDD pole terms are im-
portant. For nonphysical J and [ values no ex-
plicit calculations seem to have been performed,
but the left-hand cuts coming from single-par-
ticle exchange are smooth functions of J. Hence
we may summarize the position by saying that
low-energy mN dynamics predict strongly asym-
metric N and A trajectories in the region $<J
S3, 0Sws1 GeV.

It is amusing to note that if one blindly extend-
ed the calculation to large J (e.g., by analyti-
cally continuing the N/D solution), one would
presumably obtain symmetric trajectories be-
cause the asymmetry arises purely from the
different orbital angular momenta (I =J+ 3) as-
sociated with the two cuts. However, one would
never obtain indefinitely rising trajectories
from such a procedure.

I would like to thank Dr. H. F. Jones (Imper-
ial College, London) for pointing out a major
error in an earlier version of this work and
for several stimulating communications.
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We propose here a test, using linearly polarized photons, of the hypothesis that the
forward peak in charged-pion photoproduction is due to a conspiracy between the pion
and an opposite-parity conspirator. The energy dependence of the differential cross
section for photons linearly polarized in the plane of scattering can distinguish between
a nucleon pole leading to the forward peak or a pion conspirator.

Recent experiments at Stanford Linear Ac-
celerator Center and Deutsches Elektronen-
Synchrotron indicate that the charged-pion dif-
ferential cross section has a sharp peak in the
forward direction.}»? This differential cross
section has the following properties: If we plot
s?(do/dt) vs t we find that it is roughly indepen-
dent of energy and it can be fitted by the elec-
tric Born terms up to about ¢= =0.6 BeV.® For
t<—m,,2 the Born terms are much too large
and the data can be fitted by a form-~factor mod-
el,!

do/dt= est(do/dt)Born. (1)

Models using absorption in the manner of Gott-
fried and Jackson are unable to fit the data.®
The zero-degree cross section, however, is
insensitive to how absorption is done® and so
perhaps one could cook up some sort of absorp-
tion model to get the proper ¢ dependence. In
this paper we would like to discuss how one

can explain the above data by using a pion-con-
spiracy version of the Regge-pole model, and
how the data should change in terms of the en-
ergy dependence of s*(do/dt) if the conspiracy
model is operating and we use linearly polar-
ized photons. This change in energy dependence,
as we shall see, will not occur if the forward
peak is due to a nucleon pole or to cuts in the
angular-momentum plane.

In the Regge-pole model we can understand
this peak and its energy dependence only if we
introduce a trajectory which is assumed to be
degenerate with the pion trajectory at £=0.

This trajectory is suggested by the symmetry
group O(4)* and is necessary in order for the
cross section to have a peak in the forward
direction in the Regge model. In the usual Reg-
ge model we find we can exchange the p, A,,

m, B, and A, mesons. The trajectories of these
mesons can be parametrized as followsS:

ap(t)z0.5'7+ t, a, =0.35+1,

2

aB(t)=—0.32+ t, a =t-m 2

T ’
ozAl(O) =0. (2)

The energy dependence of the 7" photoproduc-
tion data suggests that at least near the forward
direction the pion is the dominating trajectory.
The unimportance of p and B in this region

can be inferred from neutral-pion photoproduc-
tion data. By SU(3) arguments the p contribu-
tion to 7" photoproduction should be # that of
the w to 7° photoproduction; the B contribution
is V2 times that found in 7° photoproduction.

By examining the data® we see that the contri-
bution of these trajectories compared with the
experimental cross section for > -0.6 is small.
We neglect the A, and assume in this ¢ region
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