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Finite-energy sum rules (FESR)'~' express
analyticity and tie together the high-energy
and the low-energy behavior of scattering am-
plitudes. Assuming that the high-energy am-
plitude is dominated by a few Regge poles in
the crossed channel (t), and that the low-ener-
gy amplitude is dominated by a few direct-chan-
nel (s) resonances, the FESR allow us to de-
termine the t-channel Regge parameters in
terms of the parameters of the s-channel res-
onances. In the mm system both the s and t chan-
nels contain the same particles, therefore we
obtain self-consistency —or bootstrap —condi-
tions. We show how resonances in the direct
ww channel (p,f,g) generate (via FESR) the p
Regge pole in the t channel, and we calculate
np(t) for e from ——,

' to +3. This is relevant
to the intriguing question of elementarity ver-

sus compositeness of particles: If we assume
that the It —-1 amplitude is dominated by one
Regge pole, the p, then our model predicts
that this pole is moving, with dn/d& = 1.0 GeV
and it cannot be a fixed Regge pole (elementa-
ry particle). We also treat the superconver-
gent I&

= 2 and the I& = 0 amplitudes (with P and
P'), and we solve the p-f bootstrap system.

The Regge amplitude at fixed momentum trans-
fer t for high energies s is

Q ) -W'Q

where v=——,'(s-u) = &zt(t-4mw ), vo= 1 BeV',
and P is the reduced residue function (regular
at threshold). If the asymptotic formula (1)
is good for p & N, then the following FESR are
equally good':

J
N ~a(t)+n+ I

dvv ImA(v, t) =—S (N, t)=P(t)
0 n ' nt +n+1

For the low-energy (LE) integral on the left-hand side (LHS) of (2) we use the narrow-resonance
approximation:

1

LHS=C [s/(s-4m )] 2w(2l+1)[mi'x]P (z )v,ts jr s

where Cts is the isospin crossing matrix, m is the resonance mass, I' its width, and x its elasticity.
There are two approaches to any bootstrap, old' or new': (a) One uses the physical masses and

couplings in the s channel as input on the LHS to compute the corresponding output information in
the t channel on the right-hand side (RHS) of 2). One then asks whether the input and output param-
eters are consistent, min =mphys =' mout . (b) One solves the system of bootstrap equations
requiring min =mo„t, and then one checks that the self-consistent parameters are approximately

t 7equal to the physical ones, m;„(s)=mout(t) ='mphys. In approach (a) we test consistency. In approach
(b) we mix up consistency and stability, and we also test uniqueness. We shall mostly use (a), since
it is much easier for computations.

We work at fixed t and with definite isospin, It, in the t channel. We start with It= i. The RHS
of the FESR is therefore given by the p Regge term. This amplitude is odd in zt, therefore we can
use S„S» etc. We work at t=mp' and not at t =0, because we know p only at t =mp'. At t =mres'
we have

2 2 2 2p(t =m ) = (mIx)(dn/dt)w(2l+1)c [2v0/(f-4m )] [t/(t-4m )], (4)

where cf is the leading coefficient of Pf(z). p(t=0) is unknown. The approximation' p(t) =p(0) can
not be used, because it is undefined unless we specify the value of v, . If we change v» P will pick
up an exponential t dependence. Choosing vo =1 BeV' we obtain the output p(mp')/p(0) =3.0+ 0.1.

628



VOLUME 20, NUMBER 12 PHYSICAL REVIEW LETTERS 18 MwRcH 1968

Sg(N'S, ) = (a+1)/(a+ 3),

a = (3S,-N'S, )/(N'S, -S,). (5)

Using sN = 1.92, determined above from S„
we obtain a (m p ) = 1.I + 0.4 and a (0) = 0.& + 0.3.

Next we treat case (III) with (p,f,g) as input.

g has an unknown 2m branching ratio xg. We
impose I" o«=l" in and use S to determine

p p 0

By far the most important input resonances'
are the p, f(1250), and g(1650). Therefore we
consider the following three cases: Limit of
integration N is (I) above the p, (II) above the

f, and (III) above the g. We choose N halfway
between the highest resonance included and
the one immediately above. A reasonable range
for N about the halfway point is 5%=+0.15 BeV',
as explained below. (Alternatively we could
allow 1V to vary from the midpoint between the

two resonances half the remaining distance
to the next resonance, i.e. , by 5N= +0.25 BeV'. )

In case (I) we take only the p on the LHS of
(2); we use the experimental value da/dt = 1
BeV ' for connecting p and I' [Eq. (4)], and
from $, at t =mp' we obtain I" out/I'pin =0.95
+ 0.21, where 1"pout &pt and 1 pin I'ps This
should be compared with the value in the old
bootstrap' I' ut/I"in- 5-10. Our result depends
crucially on the value of the crossing matrix
element C»=-', and on the p spin. It also depends
on N, and the uncertainty ON=0. 15 BeV pro-
duces the error in this and all following results.
Because the FESR are linear in the amplitudes,
we can compute only the ratio I'out/I'in, while
the absolute value of I'p drops out of the equa-
tions. I'p (the p-coupling constant) merely
serves to fix the scale of all amplitudes.

In case (II) we use the p and the f as input
on the LHS and from $0(t =mp') we obtain I' o"t/

pI'p»=0. 84+ 0.11, where the error refers to
5N only. There are various ways of re-express-
ing this result. For example, we can require
self-consistency, assume that mp and mf are
given, and compute I'f/I'p = 1.01+ 0.18. The
experimental p width is not well known: Rosen-
feld' gives for the experimental ratio 0.91.
Alternatively we can require exact self-con-
sistency, take the experimental widths, and
use S0 to determine the cutoff ¹ We obtain
sN=-s(v=N) =1.92, which should be compared
with the half-way point sN = 2.12.

Since we now have a broader support we can
also use the higher moment sum rule S,. From
So and Ss we determine the output a(t):

zg, we get xg- 58+ 8%. If we use S, we have

xg= 58+ 1290. Combining S, and Ss to eliminate

Pp, we obtain ap(mp ) = 1.0y 0.3 and a (m s)

= 2.9y 0.8.
Next we note that the P&(z)'s in the amplitudes

corresponding to the three input resonances
p, f, and g all have their first zeros simulta-
neously at t = -0.3 Bev', or more precisely
at -0.26, -0.31, and -0.29, respectively.
Therefore the RHS will vanish near this point:
Pp(-0. 3) =0. Inclusion of the low partial waves
neglected on the LHS will shift this value down-

ward by 5t =0.1 BeV'. Let us check whether
this zero of Pp(t) is connected with the vanish-

ing of ap(t). Unfortunately (5) gives a =0/0
if P =0. Therefore we go to t = -0.75 BeV' and
check if a becomes negative. We obtain ap(-0.75)
= -0.4+ 0.1. Interpolation between the t values
gives Qp = 0 for t = -0.3 BeV'. Summarizing,
an input of p, f, and g in the s channel is able
to generate an output ap (t), with ——,

' ( ap (+3.
Our model predicts that the Regge pole in the
crossed channel must be a moving pole with

dap/dt =1.0+0.2 BeV '.
If there were only one p Regge pole, then

factorization would lead to a contradiction be-
tween the one-p-pole approach to wN charge
exchange, and 7tm elastic scattering. In the
former case~ only the helicity flip amplitude,

Pcex, vanishes for ap(t) =0, while the nonf lip
amplitude Acex' remains nonzero for n = 0.
In a one-p-pole approach this indicates that
the p trajectory chooses sense at a = o, while
the present analysis indicates that p chooses
nonsense. This contradiction disappears if
we assume we have one effective p trajectory,
which simulates the combined effect of p and
pf

The Ig = 2 amplitude does not contain any known

Regge pole, and is therefore superconvergent.
Since it is even inst we can test the relation
$, =0. The contributions of p, f, andg at t=0
axe -0.34, +1.24, and -4.10, and have the ten-
dency to cancel on the LHS, thus producing
a zero on the RHS of (2). On the other hand,
the convergence of the LHS is bad, the magni-
tudes increasing like p in S,. This is because
the sole difference between the p-producing
sum rules for It = 1 and the superconvergent
sum rules for It = 2 is a sign in the crossing
matrix. The only way to simultaneously gen-
erate the p in It =1 and superconvergence in
It=2 is to have very large, but strongly over-
lapping, resonances, or nonresonating contri-
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The solution is p, =2.7 and g=2.0, while the
experimental values are p, = 2.7 + 0.2 and ~ = 2.3
+ 0.5. If we restrict our attention to physical

butions. For a quantitative comparison of It
=1 and It =2 we determine P at t =@pe& assum-
ing that n =1 for both amplitudes. We obtain
P= 4.7+0.4 for Ig =1 and P =0.2+ l.0 for It =2.
In the superconvergent case P is compatible
with zero, but the error is much larger. This
is a general feature of FESR's: In amplitudes
which are large (respectively, small) at high

energies, the resonances enter with the same
(respectively, alternating) signs, .the amplitudes
are therefore smooth (respectively, violently
oscillating) at low energies, and the error in
the FESR is small (respectively, large).

The It = 0 amplitude is complicated because
it contains two Regge poles, called P and P',
at t = 0. We use p and f as input on the LHS
[case (II)), and take the cutoff sN = 1.92 as above.
At t =mf ' we obtain for the LHS S, = 38, while

f contribution' to the RHS is 40+ 9. Therefore
one pole dominates ImA at f =mf . (We do not
know whether to identify the f with P or with
P'. ) In contrast P and P' have comparable im-
portance at t=0 (for s=1.9 BeV ), since the
LHS =1.8, while the P contribution' to the RHS
gives 0.8, the difference evidently being due
to the P'.

Finally we solve a simple bootstrap model.
We use two equations: 8, for It =1 at t =mp',
and S, for It =0 at t =mf . We assume that the
FESR are dominated by p and f. For algebra-
ic convenience, (i) we put m„=0; (ii) we fix
the cutoff N at the f resonance, and correspond-
ingly take only half the f contribution on the
LHS; (iii) we retain only the leading term in
the Legendre function on both the LHS and RHS.
We have two equations in the two unknowns:
The mass ratio p = (~f/~ )2 and the coupling
ratio X = [(2l+ I)xml'] /[ ~ ~ ]&. The p coupling
merely fixes the sca e of all amplitudes, while
the p mass fixes the scale of all energies. "
Finally we take de/dt [which is needed in Eq.
(4)] from experiment: m& (da/dt) =0.60. The
equations So and S, now read

values J & 0, p & 0 then the solution is unique
and stable. Perturbing the LHS of (6) and (7)
by 10%%uo changes the solution by less than 10 /~.

Discussion of approximations and errors. —
Resonance saturation on the LHS requires a
low N, since above the low-energy region the
leading direct-channel trajectories, p and f„
will be accompanied by more and more reso-
nances, or nonresonating background, in the
lower partial waves. On the other hand, the
assumption of Regge dominance on the RHS
requires a high ¹ As we go from t =0 to t
=~p the relative importance of the low par-
tial waves decreases, since the contribution
of each partial wave is proportional to (21+1)
xP&(zs). For example, for s =mp and t =mp
we have z -3. Therefore if the s-channel e(750)
exists and has the same width as the p, it will
be only ~ as important as the s-channel p at
t =rgp'. This relative suppression factor to-
gether with low widths or elasticities (or both)
is responsible for the unimportance of the ne-
glected resonances. ' On the other hand, high
partial waves become relatively more impor-
tant as zs increases. Because of this the real
part of the partial-wave series diverges at
t =m ', so one might fear that the convergence"

p '.

of the imaginary part is slow. Let us check
how strong the first neglected wave is, for ex-
ample the d wave at s =m ~. At t =m ~ and s

p
'

=m&, the Born d wave from p exchange (note
that the Born approximation is good for high
l) amounts to only 0.4% of the resonating p wave,
and the d wave from the f t:ail amounts to 2 /~.

Closely related is Bareyre's conclusion" for
mN scattering that up to the 1688 resonance
(F wave) all G-wave phase shifts are smaller
than 3 deg. Evidently the prominent resonanc-
es are peripheral effects, lres=kR, and the
peripheral waves are either resonating or very
small. We conclude that for s=nz and t=~

p p
the ultraperipheral as well as the central par-
tial waves are unimportant, and the LHS of
the FESR is well approximated by the promi-
nent peripheral resonance, the p. This is not
surprising. The crucial point is that Regge
theory in the direct channel tells us that for
t - ~ the saturation of the LHS of the FESR
by the leading resonances becomes exact. '5

On the RHS we ask: For what N and t is a
secondary Regge trajectory, p', negligible' ?

We assume that the p' corresponds to particles
in the t channel. These belong to low partial
waves, and can be suppressed by going to high
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zt. This is equivalent to large N and/or low
t. To summarize, on the LHS we want low N
and/or high f, on the RHS we want high N and/
or low t. Our quantitative analysis indicates
that there is no gap between the two (s, t) re-
gions in which the approximations are valid,
e.g. , at s =t =m both approximations are good
to 90%.

Unitarity is not used directly in the FESR
bootstrap scheme, but it is eminently impor-
tant in our estimates of the neglected terms,
the p' in the t channel and the low-/ background
in the s channel.

The background integral in the g plane which
was neglected on the RHS is responsible for
the wiggles of the LHS as a function of N. We
estimate the error from neglecting it by com-
puting the standard deviation of the oscillating
expression (LHS)(u+n+1)(Nu+" +1) 1 from
its average value P. Numerical evaluation for
It = 1 in the region between the f and the g shows
that this error amounts to about 10%, and that
it can be simulated by taking 5N, =+0.10 BeV'
in the narrow-resonance expression. In the
narrow-resonance approximation the LHS be-
comes a step function, and the choice of N rel-
ative to adjoining resonances becomes impor-
tnat. For It = 1 the narrow-resonance approx-
imation reproduces the finite-width result,
if we choose N halfway between adjoining res-
onances with 5N, =+0.10 BeV'. Here we com-
bine these two 5N's and use 5N =0.15 BeV'.

In the FESH boots'trap it is exact to work
with only one channel, mm-mm, and to leave
out coupled channels like 7tm -KK, mm -m~,
etc. However the latter can give us addition-
al information.
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