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In what follows we put the spin relaxation times T~
and T2 equal to infinity.
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between the diffusion coefficients governing the decay
of J~ and J+ entails complications which there is no

space to discuss here; Eq. (11) is simply to be regard-
ed as a convenient definition of ya.

This is not quite obvious if Z&&0 and deserves theo-
retical and experimental checking. Our preliminary
calculations appear to indicate that it is so.

~For details of the theory we refer to the standard
treatments; provided the detector is not phase-sensi-
tive the new features introduced here give rise to no
special difficulty.
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We consider a new model Hamiltonian R(v) for interacting v-dimensional classical
"spins"; K(") reduces to the Ising, planar, and Heisenberg models, respectively, for
v=1, 2, and 3. Certain critical properties of 3C(") are found to be monotonic functions
of v.

Although it was first introduced as a simple
model of ferromagnetism, the nearest-neigh-
bor S= ~ Ising model has come to serve as a
practical model for a binary alloy and a clas-
sical gas. ' More recently, the classical pla.—

nar model has received attention as a fairly
crude lattice model for the A. transition in a
Bose fluid. '&' The classical Heisenberg mod-
el has been proposed as a realistic model for
isotropically interacting spins at temperatures
in the neighborhood of the critical temperature
T~. Finally, the spherical model' has long
been attractive, especially since it is exact-
ly soluble. The Ising, planar, and Heisenberg
models are special cases (for v= 1, 2, and
3) of

where the %i (") are v-dimensional vectors of
magnitude Kv, and -2/v is the energy of a near-
est-neighbor pair (ij) of parallel "spins" local-
ized on sites i and j. Here we apply high-tem-
perature expansion methods to obtain some
critical properties of the model Hamitonian (1).

We have calculated, for general v and for
general lattice structure, the coefficients a~(v)
in the expansion for the zero-field reduced

susceptibility

(v) ~ (v) n

nn=1
(2)

[through order n= 8 for close-packed and through
order n=9 for loose-packed lattices], and the
coefficients c„( ) in the specific-heat series

c"=xu P; "."
n=2 "

[through orders n = 9, 10 for close- and loos e-
packed lattices, respectively]. Here x —= 2J/AT
and k is the Boltzmann constant. The coeffi-
cients were computed directly from a diagram-
matic representation of the zero-field spin cor-
relation function (S0 ~ Sg)p(") for 3C(v). The
requisite diagrams' are the same regardless
of the dimensionality of the spins. Moreover,
certain topological similarities among the dia-
grams may be exploited to reduce from 298
to only 15 the number of averages or "traces"
which must actually be calculated. ' We obtain
complete agreement with previous calculations'~3~~
of the coefficients a„(v) and cubi(v) when we spe-
cialize to the cases v=1, 2, and 3; hence our
work serves as an independent and very thorough
check on these previous calculations. More-
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over, because only one diagrammatic calcu-
lation is required to obtain the expansions for
general v, it is quite feasible to extend to ar-
bitrary v several calculations which have re-
cently been performed for v = 1 (the S = 2 Ising
model). '

It has proved possible to solve exactly for
the partition function and spin-correlation func-
tion of a linear chain with N v-dimensional
spins, from which we obtain the exact expres-
sions y(v) = (1+yv)/(1-yv) for the reduced sus-
ceptibility and E(v) = -2Jvy v for the internal
energy per spin (in the limit N-~). Here

2V —1
y -=——ln[x' I, (vx)];

v v ~x —,'v-1

thus, e.g. , y, =tanhx, y, =I,(2x)/I, (2x), y, =Z(3x)
—= coth3x —1/3x, and y = 2x/[1+ (1+4x')"2].'

These exact results for the [1]-dimension-
al lattice have motivated us to calculate gen-
eral-lattice expressions for the coefficients
in the (generally smoother) series

(v) (v) n=1+ ~A yn vn=l

and

(5)

for all v, and we correctly extrapolate to y„
= 1 (or Tc(v) = 0). For [2]- and [3]-dimension-
al lattices, ratio and Pade methods applied
to either Eq. (2) or (4) suggest that Tc(v) de-
creases smoothly and monotonically from its
value at v=1 to its value at v= ~ [see Fig. 1].
The critical exponent y(") in the assumed form
of the divergence of the susceptibility, )i-(T

Tc)y-, correspondingly increases as v goes
from 1 to ~. It appears that y(") is indepen-
dent of lattice within the class of fcc, bcc, and
sc lattices, "and that its variation with v [see
Fig. 2] from its v=1 value (-1.25) to its exact
v= ~ value (2.0) may be conveniently summa-
rized to within a few percent by the mnemon-
ic formula y(v) =1+tanh[(v+3)/16]. The spe-
cific-heat exponent ct(") also appears to vary
smoothly from its v = 1 value (s) to its v = ~
value (—1)." Similarly, as v goes from 1 to
~, the exponent v [describing the approach to
zero as T -Tz+ of the inverse correlation range,
v- (T Tc)v] i—ncreases smoothly from 0.64 to 1.

In summary, we have introduced a new mod-
el Hamiltonian for both computational and con-
ceptual reasons. Computationally, we found

that we could obtain high-temperature expan-
sions based upon (1) for arbitrary v with. no

more difficulty than for, say, v=3; moreover,
the exceedingly difficult (in practice) problems

No new diagrammatic calculation is necessary
to get the new coefficients in Eqs. (4) and (5),"
e.g. , the An(v) are obtained directly from the
an(v) of Eq. (2) by substituting in Eq. (4) the
small-x (high-temperature) expansion of y v,

y =x[1+Ql x +Q2 x +Q3 x + ~ ], (6)
v 2 v 4 v 6

and then equating coefficients of successive
powers of x in Eqs. (2) and (4).~~ Here Q, (")
= —v/(v+2), Q (v) =2v2/[(v+4)(v+2)], Q3(v)

= —v3 (5v+ 12)/[(v+ 6) (v+ 4) (v+ 2)2] Q (v) = 2 v4(7 v

+ 24)/[(v+ 8) (v+ 6) (v+ 4) (v+ 2)2], etc.
Having calculated the general- v expressions

for the basic coefficients in Eqs. (2)-(5), we
proceed to study the dependence of various
critical properties upon the dimensionality of
the spins. First consider the critical temper-
atures Tc(v) for [d]-dimensional lattices. For
the [1]-dimensional linear chain we find that,
when applied to the expansion (2), neither Pade
approximant methods' nor "ratio" methods'
predict the known result Tc(v) =0. However
the new expansion coefficients An(") ——son
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FIG. 1. Variation of T~~ with v for the fcc and
plane triangular lattices. The ratios pn(" —=&n

" /
8]I )@ 1( I of successive coefficients &n(" in the sus-
ceptibility expansion (2) are plotted against 1/n As n.
—~, p„t ~-t~~"~ =A'&z~"~/2zJ. Three of the extrapola-
tions shown (dashed lines) are to exact values: t~~ ~[fcc]

0 7436' ' '
s tc ~ Q, ~ =0 6068 ~ ~ ~, and tc Qj = 0

Curves for other values of v lie between the ones shown.
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FIG. 2. Variation of y(v} with v for the fcc lattice.
The function yn, „1("}=1—n+np„("}/t„„1(}, where
tn, n-l("}—=npn( )—(n-1)pn 1("} gives the value of y
which would be obtained by placing a straight line
through the ratios p„("}and p„1(v} (plotted against 1/
n as, e.g. , in Fig. 1}. Thus yn n 1(v) should approach
7'(v) as n ~ if )( diverges with a power law as T- Tc(v}
One of the extrapolations shown is exact: y( }=2.
Curves for other values of v lie between the ones
shown.

of checking a calculation are substantially al-
leviated, since the limit v=~ is exactly solu-
ble' (as is the case v =1 for [21-dimensional
lattices). Conceptually, we have found that
certain critical properties do appear to depend
upon v (contrary to the belief that "detailed
properties of the Hamiltonian become unimpor-
tant in the critical region"), but that this v de-
pendence is smooth and monotonic. It is of
course quite possible that for two-dimension-
al lattices Tc(v) is nonmero only for v= l (the
S=

& Ising model). "
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5As v , it has been seen that X(v) is essentially
equivalent to the spherical model (H. E. Stanley, to be
published). All that we refer to in this Letter is the
equivalence for T &T~; the situation for T (T& re-
quires further comment and will be discussed else-
where.

8The procedure of obtaining the an(v} from the spin
correlatiog. function is illustrated for the case v = 3 in
H. E. Stanley, Phys. Rev. 158, 546 (1967).

I The 298 diagrams [which are required to carry the
expansions (2) and (3) as far as we have] are explicitly
displayed in Figs. 1-5 of H. E. Stanley, Phys. Rev. 158,
537 (1967). These diagrams were used to calculate the
"second moment series" QRR (S0 SR)p (required to
determine the exponent v describing the inverse corre-
lation range) as well as the susceptibility (QR (80 SR)~)
series (2) and the specific-heat (-nearest-neighbor cor-
relation function) series (3).

For example, M. F. Sykes, J. L. Martin, and D. L.
Hunter [Proc. Phys. Soc. (London) 91, 671 (1967}]have
very recently extended the series (3) for the S =& Ising
model; similarly, N. W. Dalton [Proc. Phys. Soc. (Lon-
don) 88, 659 (1966)] has included next-nearest neigh-
bors in the series (2) for the case v = 1. We have al-
ready extended to arbitrary v the calculation of the sec-
ond-moment series (see Ref. 7).

Here the I v(z) are modified Bessel functions of the
first kind.

~ Another expansion which can be obtained without any
new diagrammatic calculation is motivated by the
Bethe-Peierls approximation, y("}= (1+yv)/(l-oy„),
where a =z-1, and s is the number of nearest neigh-
bors. Suppose that we "factor out" the Bethe-Peierls
singularity from our expansion (4):

X =(I-oy ) [I-(c-1)S -~S + Z D(v) -2 2 (v) n
v v v n vn=3

The new coefficients Dn( ) are thus defined in terms of
the An(v) of Eq. (4) by the recursion relation Dn(v)
=An(v)-20An 1( )+a An 2( ). Whereas the coeffi-
cients An(v} are very complicated functions of the vari-
ous lattice constants, the Dn(v} are quite simple.

Thus, e.g. , A (v) —
11 (v) —zI A (v) —tI (v) =zo', A (v)

= t)&("}—QI(v}AI (vI =zo2 —6p3, A4("') = 84(")—2@&(v)A2~v)
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Baker, Jr. , Advan. Theoret. Phys. 1, 1 (1965), and
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~SC. Domb and M. F. Sykes, Phys. Rev. 128, 168
(1962).

There is one exception: For v = 1, the ratios p+
—=az/ala~ 1=1/n, so that extrapolation to Tc =0 is
possible even with the [generally less regular] series
(2).

5We also note that, in general, y(~) is not a simple
fraction —though of course certain values may well be
(e.g. , y = 1.32= 21/16, y = 1.38= ll/8).

6Actually the T- T~+ singularity in the specific heat
need not occur as a simple factor, e.g. , for the fcc lat-
tice, Ci -1.09(l—Tc/T) i 8—1.24 [M. F. Sykes et al. ,
Ref. 8]; C( ) -const(1 —Tc/T)+k/2. We note that u(&)
appears to pass through zero (corresponding to a log-
arithmic singularity) between v=2 and v=3; for v&3,
o,'is negative and the specific heat has a cusplike sin-

gularity. In particular, a appears to be slightly less
than zero (-0.03 +0.03), which is consistent with the
most recent measurements on the "Heisenberg ferro-
magnet" EuS, for which o. was found to be 0+0.03
(B.J. C. van der Hoeven, D. T. Teaney, and V. L. Mo-
ruzzi, to be published). Note that if we define the mag-
netization exponent P(") by the (nonrigorous) equality
of (P) +2P(")+y("' —=2 [not to be confused with the rigor-v&=

ous Rushbrooke inequality n'+2P+p' -2], we find that
P(") also varies smoothly and monotonically from its
accepted v=1 value to its exact v=~ value: P'i~=—6/16,
P = 11/32, P =s, ~ ', P( )=a. [The critical expo-
nents are defined and discussed in Ref. 1.]

~~Indeed, the indicated phase transitions, if real (for
there is nothing rigorous about extrapolating from a
finite number of terms of an infinite series), would
have to be a new type of low-temperature phase with
no infinite-range order M, yet with sufficient long-
range order that X diverges to infinity.
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