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fit, for example, the well-known moment re-
lations,® but they must in addition also show

the proper behavior of the current-current cor-
relation function as reflected in Q(«).
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We derive a new relationship between the shape of the critical isotherm and the range

of the two-particle correlation function.

In this note we extend some results of Per-
cus and Stell,! based on work of Percus?? and
of Lebowitz and Percus,* to obtain a new rela-
tion between the shape of the critical isotherm
in the critical region and the range of the to-
tal correlation function #(r) at the critical point.
In two dimensions the relation coincides with
the single expression (13) that Fisher® has shown
to follow from the work of Widom® and of Ka-
danoff.” The relation will also reduce to (13)
for d =3 (d is the number of dimensions) if one
assumes that the second moment of ¢(¥), the
direct correlation function, is identically ze-
ro at the critical point, but we shall note that
there is evidence that it is not.

Our results support the view that the case
d =3 is qualitatively different from the case
d =2, with respect to the scaling relations,
and they further suggest that d =3 may be on
a rather more subtle borderline in this connec-
tion than heretofore suspected. They reveal
at least one aspect of a mechanism that may
invalidate those scaling laws in which d explic-
itly appears, and suggest that the appearance
of the pair potential V(¥) through its second
moment is a crucial part of that mechanism.

We use the notation by Fisher,® which is de-
fined here by (6) and (7). Assuming a nonze-
ro M,, where M,= [c(T)r%d¥, »=I|T|, we find
that

n=2-[d(6-1)/(6+1)] if 2>d(6~-1)/(56+1);
=0 if 2<d(6-1)/(6+1). (la)

When 2=d(6-1)/(6+1), we also find that eith-
er the functional form given by (6), and also
(9), or that given by (7), consequently (9) and
(11), must be modified in order to have consis-

tency among these expressions and (2). Per-
haps the simplest and most natural modifica-
tion follows from retaining (7) and adjusting
(6) accordingly; we then find that at the crit-
ical point

Al

42 (@=2)/2d

h(F) =

for v =~ o, (1b)

However, modifications in which In factors
appear in both A(f) and p—pu . are also possible.
(The subscript ¢ will refer to a critical value
wherever used.)

We begin by writing the Ornstein-Zernike®
integral equation that relates the total corre-
lation function %2(12)=g(12)-1 to ¢(12), where
we let 12 stand for T,,. Also letting d(¢) stand
for dT;, we have, for a uniform system of den-

sity p
n(12) = c(12) +p [h(13)c(23)d(3). 2)

Among the various ways?™* of writing a second
expression relating % to ¢, perhaps the simplest
comes from a functional expansion of y(1)=2x
+BuL—-Bp (1), where A=31In(2mm/Bh?), u is the
chemical potential, 87! is Boltzmann’s constant
times the absolute temperature, % is Planck’s
constant, and ¢(1) is the external field at F,.
The functional derivative of y(1) with respect

to #(2), the one-particle distribution function,
is [6(12)/n(1)]-c(12) [6(12) is the Dirac delta
function], which we shall denote as —&(12):

oy(1) _5(12)
m(2) n(l)

—c(12)= —2(12). 3)

From Eq. (3.4), p. 249, of Ref. 4 we obtain,
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after some manipulation,
c(12) = —BV(12)-B[ -1 —ph(12)d p/dp]
+p(AC xAR)-S(12), (4)
where

Aéxah= [[2,(13)-2(13)]1(23)d(3)

- J[2,(13)-2(13)In(12)d(3);  (5a)

s szGn

S+2
x I {[rG2)-r(12)}d(@)}; (5b)
i1=3

5° (1)
<o on(s+2)l,

and the subscript zero denotes that the quanti-
ty labeled is to be evaluated at the number den-
sity pg(12) rather than p.

Equation (4) is the basis for the rest of our
discussion. We use it because %(r) is a quite
slowly varying function of » for large » at the
critical point, and in the limit of infinitely slow-
ly varying %, one is left with only -8V plus the
next term in square brackets involving u,. The
most obvious way of evaluating the deviation
from this limiting relation is to assume that
p(AC xAR) gives the largest contribution, S,
constitutes the next most important term, etc.
However, & is slowly varying only for large
7,, and has a short-ranged part that can be quite
rapidly varying and peaked around the origin,
so that we cannot expect this formal ordering
scheme to be more than suggestive. Neverthe-
less, a detailed study that we have made indi-
cates that although AC x A% and the Sg do con-
tribute terms of the same order of magnitude
as Blp,—u—phdu/dp], they in fact yield no terms
that dominate it. Here we shall simply take
this conclusion as an assumption, referring
only briefly to the argument in its support and
dwelling instead on its consequences.

We introduce n and 6 by assuming that at the
critical point

1(12) ~A /r 0T o). ©)

12

We also assume that in the critical region the
critical isotherm is described by the equation®

5
up)-ulp,) ~A,lp=p | sgnip-p J. ()

If (7) is assumed, at the critical point (5) be-
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comes just
¢(12) ~ =gV (12)~fA, Ip_1(12)1° sgni(12)
+pc(A6*Ah)—S(12) rp==). (8)

For simplicity we shall only consider W(12)’s
that fall off fast enough so that the first term
in (8) can be neglected as 7,,~

In order to complete our analysis of the last
two terms of (8) in the critical region, we have
assumed further that in that region, ¢ and %
can each be written as the sum of a short-ranged
part that can be neglected for large 7, and a
long-ranged part with a dominant term of the
form f(kr)/¥P, where « is an inverse correla-
tion length that goes to zero at the critical point:

d+'r]—2+

s
n(12)=h (12)+fa(K’}"12)/1’12 cee,

(9a)

d+s
12 toeee, (gb)

c(12)=cs(12)'+fb(m'12)/r
Here f, and fj are assumed to behave like non-
zero constants for k=0 and large 7,,. To illus-
trate our conclusion that we must anticipate
a contribution of O(%%) from the last two terms
in (8), we rewrite the last term of (5a) with
the aid of (7), to find that at p, and T,

-p Cf (e

0(13)—6(13)]11(12)51(3)

~ 084, (sguh) Iph1” (ryg=w).  (10)

The rest of AC xAh can also yield a contribu-
tion of O (%) as a result of the convoluting of

the short-ranged part of AC with %z, and one
cannot in general expect exact cancellation be-
tween these two O(k0) terms. However, con-
tributions from the convolution of % and the long-
ranged part of A¢ appear to be negligible. Sim-
ilar analysis of the Sg yields further contribu-
tions of order %% but no terms of lower order;
our conclusion is finally that at p, and T,

c(12) gAsh(lZ)(3 as 7, =, (11)

with A, unassessed but assumed to be #0 in
what follows.

We now use the sort of argument that was
initiated by Green!® and subsequently used and
extended by others.!!;'2 The precise form of
the d-dimensional Fourier transform C(%) of
the ¢(12) is given by (9b) when k=0 depends
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on the size of s. For small 2= |k|, when s=2,

é(E)=Blk21nk Heee, (12a)
Otherwise,

A > 2 s

C(k)=sz +---+Bsk +oen, (12b)

In writing (12) we have made use of the condi-
tion that C(0)=0 at the critical point. If s <2,
(12) reveals that (2), (6), and (11) justify our
use of the functional form of (9b), at least at
the critical point, and further require that s
=2-7 and

n=2-d(6-1)/(6+1), (13)

yielding (la), which is also obtained when s
>2 if B,=0. On the other hand, if s >2 and B,
#0, then (12) indicates that at the critical point
% (12) has the asumptotic form predicted by the
Ornstein-Zernike theory, n=0. If s=2 and
B;#0, (12) reveals that (2), (6), and (11)A are
not compatible, owing to the In term in C(k),
but the change from (6) to (1b) restores com-
patibility by suitably modifying (12). With B,
=0 and B;=0, however, we would have for all
s the same expression (13), which Fisher® has
shown to follow from the work of both Widom®
and Kadanoff,” and which is also implicit in
the work of Domb and Hunter.13

When s >2, B, M,=[c(12)r,,%d(1); for all
s, the picture that emerges from our work can
conveniently be considered in terms of M,.
Assuming (9a), it is easy to show that M,~ k=7
in the critical region; so 7 is a direct measure
of the finiteness of M, at the critical point.
For the d =2 Ising model, n=% and M,=w, ow-
ing to the long-ranged tail of ¢(12). Thus when
d =2, any details concerning the contribution
of -BV(12) to M, are masked by this infinity
and as a result are irrelevant to us here. For
the same model, d=3, 7 still appears to be
>0 according to the exhaustive study of Fisher
and Burford,* who find 7~ 1/18. We believe
that only the existence of some heretofore un-
expected singularity in #(12), such as the oc-
currence of the In'’®» in (1b), could throw any
doubt on their very convincing results. Thus
for the Ising model, when d =3, it appears that
either M, is », assuming (6), or % is given by
a more complicated expression than (6). Tak-
ing (1b) as that expression, however, one still
has M,=«, and —~gV(12) is still hidden. The
experimental results®7-!2 for d =3 are less con-

clusive but are consistent with 0.2=7n=>0. Thus,
here too, M, is probably « but could be finite

in some cases. As one goes to d >3, there are
only meager clues to serve as a guide, but one
reasonable possibility® is that M, will become
finite for some d >3 and will stay finite as d
goes to «. In any case, if M, does become fi-
nite for a particular d, for that d the small 7,
details of ¢(12) will become important in deter-
mining M,, and since one expects —gV(12) to
make a major contribution to ¢(12) for small
7,5, the value of the second moment of V(12)
itself will then emerge as a key quantity in the
determination of critical behavior. Finally
there is a borderline at which M, has a loga-
rithmic divergence when s =2 (simply because
[r T'dr ~Inr); this gives rise to the term Bk%Ink
in (12a).

Of course, whenever M, is not «, it may turn
out to be 0; we cannot rule this out and it would
then mean that [V(12)r,,%d(1) does not appear
in our considerations after all—a zero M, masks
V(12) just as effectively as an infinite M,. Un-
til this point can be clarified by a direct the-
oretical deduction, the choice between (1) and
(13) will have to be made on the basis of their
comparative agreement with known results.

For d=2, Egs. (1) and (13) are identical,
and they are consistent with known theoretical
results. For d=3, the situation is less clear.
Most experimental estimates of 6 are consis-
tent with 6 <5 [for which (1) and (13) are again
identical] and, when the experimental estimates
of n and 6 are compared, they are consistent
with (1). The Ising results® for d=3 of 6=5.2
and the more recent!® 6=5.0, together with the
n=1/18, are in clear disagreement with (13),
but the 6=5.0 can perhaps be reconciled with
(1b) if one allows the possibility that (1b) could
give rise to an estimate of a small positive
7 in a Padé-type analysis.!’®* For d —«, one
expects® 6—~3 as well as n—0, in agreement
with (1) but not (13).

We finally note that if one includes a factor
(lnIP—pcl))\ on the right-hand side of (7), one
will again obtain (1b) with a A-dependent pow -
er p of Inr,, rather than p = (d-2)/2d; p = (A +1)(d
—-2)/2d. Such a X could appear to be a small
positive power of |p—p.| in the same way that
p could show up as a small positive power of
7,5, and then even the estimate 6=5.2 could
perhaps be reconciled with our development.

A recent study of experimental results!” also
suggests a value of =5, as does the theoret-
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ical work of Ref. 13, indicating that d =3 might
in general represent the borderline case of

s =2, accompanied by ln terms in £(12) and
possibly in p-p. as well.

We are indebted to M. E. Fisher, L. P. Ka-
danoff, W. Theumann, and B. Widom for help-
ful comments and discussions, J. K. Percus
for invaluable guidance, and Professor Ph. Mey-
er for his kind hospitality at Orsay.
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