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The magnetoresistance of dilute magnetic alloys is calculated for arbitrary magnetic
fields and temperatures by S-matrix theory on the basis of the s-d model. The results
agree qualitatively with the experiments of Monod on Mn in Cu in the temperature
range covered by him, but not with the results of Daybell and Steyert on Cr in Cu.

Since Kondo's theory of the anomalous elec-
trical resistivity due to magnetic impurities, '
and the subsequent theoretical developments
pointing to strong resonance effects between
the conduction electrons and the localized mo-
ment, the magnetoresistance of such alloys
has assumed particular theoretical significance.
A magnetic field should not only "freeze out"
the local moment (an effect already implicit
in the early theory of Yosida2) but also, if strong
enough, should intrude upon the resonant con-
figuration held responsible for the Kondo effect.

Vfe have calculated the variation of resistiv-
ity with temperature and magnetic field by S-
matrix theory. Our results are approximate
but analytically satisfactory throughout the IJ-
T plane. A detailed perturbation calculation
has been done by Baal-Monod and Weiner, ' val-
id only in the range T» T& or else 8» T~ (mea-
suring temperature and field in energy units),
where T~ is the temperature below which the
Born series for the scattering amplitude diverges

To obtain unrestricted results, we include
the magnetic field in the unperturbed Hamilton-
ian IJ'; for the perturbation, we use the "s-
cf form;

x = f[v(r)+z(~)5(r) 5]dsr

with J positive, 5 the Pauli matrix vector
of the localized spin, and —.-5(x) the conduction-

electron spin density. For simplicity we con-
sider zero-range potentials, rendering integrals
convergent by use of the symmetric "one-band"
density of states function

where x is the energy measured relative to
the Fermi energy EF = 1. This still has suffi-
cient analyticity to permit use of the Ball-Fraz-
er -Froissart method. 4~'

%e label states by quantum numbers appro-
priate to weak coupling: k = conduction-elec-
tron wave number (x = k' = kinetic energy), o
= conduction-electron spin, and S = impurity
spin (we consider only spin-& impurities). We
further assume that the g factors of the conduc-
tion electrons and impurity are equal, an as-
sumption self-consistent in our approximate
solution of the scattering equations.

The in and out states may then be written as

(k, v, S)~=- C + IS)

+ (~ + e —K+ i5) '[K', C +] IS).

The energy of such a state is

(d +6 = {c0 +IJS)+ (x+IJ&),s ko 0

where the kinetic energy x is conserved in col-
lisions and ~, is the field-free ground-state
energy.

The scattering equation [analogous to Eq.
(13a) of Suhl6] has the following form:

In this equation, the variables x and z represent kinetic energies; f(x) is the Fermi function and THorn
is obtained directly from (1). This scattering equation (with those leading up to it) has satisfactory
behavior under time reversal, obeys the unitarity condition and crossing symmetry, and reduces
to sensible or known results for large and small H, T.

The invariant decomposition of the scattering amplitude is

T= i+ ~F 5+U% H+ W(if 5x 8) +I'(5 H)(5 H)+Z(5 H) (4)
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(the decomposition into only three amplitudes
given by Suhl' was incomplete).

The first step towards a solution is the ex-
traction of an over-all Froissart factor R(z)
defined by the substitutions

1-2IIipt(z) -=(1-2aipt)R(z) -=S (z)R(z),

and for any of the other five amplitudes, e.g. ,
d'or U,

~(z)=S (z)R(z)~(z), U=S RU, etc.
e e

R(z) may be found in terms of the barred am-
plitudes, and t is an elastic amplitude. Our
approximation consists of replacing the iter-
ative series for the barred amplitudes up to
the lowest nontrivial order by Pads approxi-
mation displaying the characteristic pole at
T= T&(H). For weak coupling (J«EF, V'«JEF)
only t, w, and U contribute significantly to the
scattering. The Pads approximations to the
other amplitudes have higher order numera-
tors or generate only J lnT, etc. , singulari-
ties. It turns our that 7 has a pole in the re-
gion P of the H Tplane (s-ee Fig. 1); in that
region a Castillejo-Dalitz-Dyson zero must
be introduced in Se.' (This procedure is the
energy-plane version of the k-plane Blaschke
factor used by Suhl and Wong. ) All physical
results are then continuous across the bound-
ary in Fig. 1.

Our final approximate formulas are (EF =unit
of energy)

HU= 2J'f, dx(f(x+H) f(—x H—))p(x)/(z-x),

R = [I+4a'p'(317. 1'+ IHU I
')]"'expip

(x+ie) = p—(x)f,dx'{In IR(x') I)/

vp(x') (x' -x),
V[l'(z)]-'= I-Vtmz -ia p(z)),

outside the region P (Fig. 1), and

V[K(z)]-' = I-V(~z -i~p(z) -X/(x, -z))

inside the region P, where A and x, are chosen
to remove the pole, which can only occur on
the imaginary z axis for symmetry reasons.

For H=0, yR(0) is exactly zero by symme-
try, and then the results agree exactly with those
of Hamann when V=O." For various sample
cases with Ht0, yp remained very small and
was therefore neglected. The Fermi functions
f(x) were approximated by straight-line segments
in the three ranges (-~, -T), (-T, T), and (T,
~). This cannot seriously affect the results
but may have been responsible for the nonmono-
tonic pole boundary in Fig. 1, as well as some
of the minute structure of the curves in Fig. 2.

The relaxation times are given (up to a com-
mon factor) by

(v ) ' = Imt + (tanhPH) Im(HU)

+ (tanhPH) 1mw, (5)
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FIG. 1. In the region E' of the T/Ty(0)-H/Ty(0) plane,
the scattering amplitudes calculated by Born series ac-
quire a complex pole. Here T~{0) is the "Kondo tem-
perature" in the absence of a field.

FIG. 2. Resistivity, in units of &-wave unitarity
limit, versus temperature, for J=0.025 and V=0.01,
and various II [Tp{0)=9&&10 5}.
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FIG. 3. Besistivity versus field at various tempera-
tures for the same conditions as Fig. 1. Below H=0.5
&& 10, the resistance is only weakly field dependent.

evaluated at x =+H.
Curves of the resistivity versus T for vari-

ous H are given in Fig. 2. For sufficiently large
H, there are two well-separated peaks; the
first one occurs at temperatures above T&,
whereas the second (lower temperature) peak
is dependent in size and position primarily up-
on V.

The experiments of Monod" on copper man-
ganese agree qualitatively with these calcula-
tions insofar as they overlap in the tempera-
ture range. (The temperature was low enough,
and the fields high enough to check the upper
peak in Fig. 2. ) On the other hand, Daybell
and Steyert" working with Cr in Cu, observe
no peaks, only a low-temperature plateau re-

gion.
In Fig. 3, we show the resistance as function

of H for fixed T.
The drop in electrical resistance must be

ascribed to four causes: the "freeze out" of
the local moment exhibited in Eq. (5); the eval-
uation of the amplitudes at x = +H, which for
H) T~ is outside the resonance region; the
change in i from its zero-field value; and the
appearance of the new amplitude U.
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We report measurements of the "deformation effect" in the total cross section for neu-
trons on oriented Ho over the energy range 0.330-5.60 MeV. They are in good qualita-
tive agreement with the prediction of a previous theoretical calculation, and the predict-
ed inversion or sign change in the energy range 3-7 MeV is verified.

Measurements of the deformation effect"
in the total cross section for fast neutrons in-
cident on oriented Ho"' have been reported
at neutron energies of 8, 15, 0.350, and 14
MeV. ' The "deformation effect" is defined
by &odef = o(oriented)-o'(unoriented), where
o(oriented) and o(unoriented) are the total cross
sections for the oriented and unoriented cases,

respectively. The experiments have shown
that ~odef varies in magnitude with neutron
energy, but in all measurements the sign of

+odef has corresponded to the change in the
geometrical cross section of the Ho"' nucleus.
A recent calculation, ' using the coupled-chan-
nel formalism in the adiabatic approximation,
predicted that 4odef would undergo a sign change
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