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SPECIFIC HEAT OF XENON NEAR THE CRITICAL POINT*
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We report measurements of the specific heat of xenon near the critical point. Good
accuracy and temperature resolution are achieved with a semiautomatic system permit-
ting direct recording of the heat capacity. From analysis of the results allowing for the
effects of gravity, we conclude a value for the exponent o of about 0.08, although a val-
ue between 0 and -§- cannot be ruled out. A symmetric logarithm is not consistent with

the results.

We have measured the specific heat of xenon
at constant critical density in the neighborhood
of the critical temperature. Thermodynamic
analysis' shows that in equilibrium under grav-
ity the specific heat CV, g bossesses a high but
smooth peak instead of the singularity expect-
ed in Cy o- Our measurements fully resolve
this peak for a sample height of 1 cm.

The xenon (29.94% purity) was sealed at a
density of 1.099+0.003 g/cc in a volume con-
sisting of 180 interconnected vertical holes,
1.00 cm high and 0.08 cm in radius, drilled
in a copper block wound with two independent
heaters and with miniature thermistors mount-
ed in recesses cavities. This calorimeter,
silver plated on the outside, was suspended
in vacuum inside a massive (5.2 kg) chromium-
plated copper cylinder, stage 1, possessing
heaters and thermistors. This in turn was sup-
ported in a second similar stage equipped in
addition with a thermoelectric heat sink, the
whole being buried in insulating material (Ver-
miculite).

The temperature of stage 2 was controlled
by a servomechanism having both mean tem-
perature and gradient feedback. The temper-
ature drift rate of stage 1 could thereby be held
below 5X107° deg sec™! for periods of 1 and
2 h without need for manual adjustment. Tem-
peratures were measured with a 21-cps trans-
former ratio-arm bridge and lock-in amplifi-
er having an rms noise corresponding to 10~°
deg with 1-cycle bandwidth. Absolute temper-
atures were determined to within +2 mdeg us-
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ing a platinum resistance thermometer. In

the principal mode of operation a constant pow-
er is supplied to stage 1 whose temperature
rises linearly with time, the temperature of
stage 2 being maintained close to that of stage

1 throughout. Constant power is supplied to
one of the heaters in the calorimeter, the oth-
er receiving the power output of a servomech-
anism operating to maintain temperature equal-
ity with stage 1. Under these conditions the
total power supplied to the calorimeter is the
product of its heat capacity and the rate of tem-
perature rise; thus the servo power, which

is recorded directly, is proportional to the
total heat capacity less a constant, and it is
therefore possible to record directly the heat
capacity of the xenon alone as a function of tem-
perature. The system is very flexible and it

is possible to operate with the temperature
decreasing with time or to perform more con-
ventional step-by-step measurements. Results
obtained by the latter method are shown in Fig.
1 together with measurements of the intrinsic
thermal time constant 7 of the calorimeter.
While we can readily follow transient chang-

es and thus observe the thermal response of
the calorimeter, it is difficult to obtain accu-
rate values of 7, particularly where it is chang-
ing rapidly with temperature.

Very near the critical temperature the rap-
id rise in 7 results in distortion of the observed
heat capacity when 77 (dC/dT) is not small
compared with C itself; the lowest convenient
value of the ramp rate 7 was 3x10~° deg sec™.
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In this region values obtained during cooling
and heating runs differed by as much as 10%
as shown in Fig. 1. Away from the inner re-
gion our results are accurate to about 1%, but
within 20 mdeg from 7, this distortion leads
to larger errors. However, the distortion in
the shape of the ramping measurements clear-
ly does not affect the integrated area which

is the only aspect of the results from the in-
ner region used in the asymptotic analysis be-
low. There is a possible constant error of

+3 J/mole deg in the absolute values quoted
due to uncertainty in the heat capacity of the
empty calorimeter, which has not been mea-
sured separately. It is easily seen that such
a constant has no effect on the shape of the
specific heat nor on the analysis below.

Our results for the whole temperature range
measured are shown in Fig. 2. For the pur-
pose of an asymptotic analysis of the results,
it is convenient to distinguish three tempera-
ture regions: (A) an inner region [(7-T,)/
T |=1#1<3x10™* in which the influence of grav-
ity is large; (B) a region used for analysis,
3X10~*< [¢#1<7X10~3, in which one may hope
that the asymptotic form is an approximation
with 1% accuracy, and furthermore in which
the gravity corrections are very small (<4%);
and (C) an outer region where significant de-
parture from the asymptote may be expected.
We thus have available a factor of about 23
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FIG. 1. The full circles show results obtained by
conventional step methods in the immediate vicinity of
T.. The full and broken lines represent the average of
several ramping measurements at +10~° deg sec™?! and
a cooling run at —7x 1078 deg sec™!, respectively.
Open symbols show the result of time-constant mea-
surements taken with 10-mdeg (triangles) and 5-mdeg
pulses (open circles).

in 7 over which we attempt computed fits to
the gravity-corrected results.

Quite apart from any explicit dependence
of the thermodynamic functions on density gra-
dient, the effect of gravity is very large on
the apparent heat capacity near 7T of a fixed
number N=pV of atoms in a fixed volume V.
An exact thermodynamic analysis of this effect
is presented in a separate communication,®
where comparison is made with some of the
results of this experiment in region (A) not
used for the present.-asymptotic analysis. For
our purposes here, what is required is the dif-
ference between Cv,g(T) and CV, 0(7) when
this difference is small. Consider a volume
with cylindrical shape and let 7 be the pressure
difference from the mean pressure P*(7), de-
fined as the pressure at the level with as many
atoms above as below. It can be seen that dur-
ing a change of temperature the state of an ele-
ment of the fluid remains at constant 7. Thus
T“CV’ g(T) is given by the temperature deriv~
ative of the mean entropy,

N

Sg(T)=21rh P

"hs(p, T)aP,
I

where 2m, =mghp. At the critical density p,,
but away from T, it is valid to expand the
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FIG. 2. Measured values of CV, g shown as a func-
tion of reduced temperature on a logarithmic scale (T
=289.697°K). Curves a represent an asymptotic fit
with @ =0.065 to the function; C*t=101.31#—®-103.41;
C—=163.121£17®~111.66. Curves b show the gravity
correction applied to curves a.
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entropy about the mean pressure, which in
this case is also the pressure the same sys-
tem would have in the absence of gravity. One
then obtains

av

__1
Sg(T)"SO(T)— 27I’h dT .

oex

1 2(_82V)+...
T8, \TapaT ’

no linear term arising for 7> 7.. Assuming
that the coexistence curve and the compressi-
bility can be characterized by the usual expo-
nents 8 and y, respectively, we can then es-
timate the gravity contribution to the specif-
ic heat from the results of Habgood and Schneid-
er.? The dependence on 8 and y is only through
coefficients S(1-8) and y(y+ 1) which were tak-
en as 0.22 and 3.0, respectively. These cor-
rections for gravity, which are significant for
the analysis, are shown in Fig. 3. We do not
feel confident in extending them to smaller
values of ¢ where they would contribute more
than 4%, since they do not possess an assured
accuracy better than 20%.

We have attempted to fit the gravity correct-
ed results in region (B) to functions of the form

Alt?

+B.
Since the value of the entropy far above and
far below T, is unaffected by gravity, the in-
tegration of our gravity-affected results should
give the correct entropy change also for zero
gravity. Allowing for the few tenths of a per-
cent correction from the small tail of the grav-

ity effect beyond the integration region, we
can therefore impose conditions on the integrat-
ed area of the fitted functions.

A conventional least-squares method of fit-
ting was first used, each side of T, being in-
dependently tested with A, B, o, and 7, as
parameters. Demanding that T,*=T,~ and
that there be agreement within 3% with the
area integrated over an interval of 2° permit-
ted the calculation of the total rms deviation
o, for each value of @, including the logarithm
as the case @=0 and in the first instance re-
quiring that @, = @_. This latter condition (as
also the one requiring 7, = T¢™) led to neg-
ligible increase in o; thus there is no evidence
on this score for the value of @ not being the
same above and below T.. A plot of values
of 0 as a function of a reveals a shallow min-
imum, 0y,ij,=0.60 J/mole deg, at a=0.065
increasing by about 15% at o =# and nearly
20% at @=0. Deviation plots for the functions
with these values of @ are shown in Fig. 3.

It is clear that systematic deviations are just
becoming apparent for =0 and #. The require-
ment on the integrated area proves a stringent
one, locating the value of T, otherwise a free
parameter, to within a millidegree for any
specific function (the values differing by up

to 10 mdeg for various functions however).
Different choices of the integration limits should
lead to the same results, which they do for
a=0.08+0.02, but outside this range, agree-
ment is only achieved at the expense of a sub-
stantial increase in the deviations, amounting

to as much as 50% in o for the logarithm and
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FIG. 3. Deviation plots of the gravity-corrected observed specific heat in the fitting region for three functions.
log: C*=10.18Inf~1-14.57, C~=16.131InltI"1+32.89, T¢=289.694°K; @ =0.065: C*=102.22t"%~104.72, C~
=162.171t17%-110.34, T =289.695°K; and @ =0.125: CV=35.87t"%-29.77, C~=56.631¢17* +8.85, T =289.695°K.
At the far right-hand side are curves showing the gravity corrections used.
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25% for o= 4. Inall cases, the ratio A-/A+
is within a few percent of 1.6, regardless of
a. Attempts to fit a symmetric logarithm (with
A+=A-) have been made, but the best solution
involves an increase in o by a factor of more
than 4, well outside any experimental uncer-
tainty.

We conclude that our results for xenon favor
a value for o of about 0.08, although a value
between 0 and $ cannot be ruled out. The same
value of a is indicated for each side of T,

but the singularity is asymmetric in that the
coefficient is 1.6 times as great on the low-

as on the high-temperature side. While we

do not believe it is justified to expect agree-
ment within 1% of the asymptotic form beyond
the value of the temperature difference con-
sidered, we note that if one nevertheless does
so, these conclusions are not altered.

It is proper to point out a number of difficul-
ties associated with the interpretation of our
results. We have no adequate explanation of
the difference of about 35 mdeg between the
critical temperature and that of the maximum
thermal relaxation time shown in Fig. 1. We
note that Lorentzen® has observed a similar
effect near the critical point of carbon dioxide.
In this case the time-constant maximum occurred
about 30 mdeg above the critical temperature
obtained from meniscus observations. Anoth-
er cause of concern, although perhaps attrib-
utable to impurities, is the fact that the crit-
ical temperature indicated by the meniscus
observations of Habgood and Schneider? (16.590°C)
is about 45 mdeg higher than that found by us.
We can think of no reason to suppose that the
density of the xenon in the cell is more than
+0.3% away from the quoted value, although
a major error here could account for the tem-
perature differences.

It could be conjectured that in the presence
of impurities the establishment of diffusion
equilibrium takes even longer than is indicat-
ed by our measured values of 7. However,
measurements of CV’ g made with negative
ramp rates give essentially the same results
as those for comparable positive rates (distort-
ed slightly as described above). Furthermore,

we have held the sample within 1 or 2 mdeg
of T, for periods of 12 h or more before start-
ing a run, and on such occasions no detectable
change in Cy has been observed.

We have concluded, as noted above, that a
specific-heat singularity which, like that of
the two-dimensional Ising problem and the A
transition in liquid helium, is logarithmic with
the same coefficient on the high- and low-tem-
perature side, is ruled out for the critical point
of xenon by our results. It is not hard to see
how the opposite conclusion has been reached*
in studies of other gases for which the choice
of T, has been less restricted and gravity ne-
glected, particularly in view of the more lim-
ited range of asymptotic agreement for 7> T.
We do not believe that the measurements them-
selves are inconsistent with our conclusion.
Previous measurements®*® that have been re-
ported for xenon are not of sufficient precision
to permit a quantitative comparison.
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