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A possible source of incompleteness is pointed out in the most recent close-coupling
calculations for the excitation cross sections of the n =2 levels in hydrogen, some of the
results of which disagree with experiment. We present a method which removes this dif-
ficulty by the implicit inclusion of all important effective polarization potential terms of
order uir4.

A serious discrepancy presently exists between rather refined theoretical and experimental deter-
minations of the total 1s-2s excitation cross section. The purpose of this note is to suggest a pos-
sible source of incompleteness in the most recent calculations' which lies in their failure to include
the full effective polarizabilities that arise. Methods for incorporating the full ground-state polar-
izability into low-energy calculations for the elastic-scattering cross section have been given, and
in the following we present the extension to the excitation of the n=2 states.

Starting with the complete set of radial coupled equations, we specialize at once to the case where
the only open channels are those containing the 1s, 2s, and 2p atomic states. The asymptotic forms
of the closed-channel radial functions may be expressed in terms of the open-channel functions, since
they provide an oscillatory asymptotic coupling. %hen they are substituted into the right-hand side
of the open-channel equations, one obtains the following set of asymptotic relations between the four
open- channel radial functions:
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The notation is as follows: The channel indices 0, 1, 2, and 3 refer to the combinations of quantum
numbers nl/'L=10LL, 20LL, 21L-1L, and 21L+1L, respectively, where nl are the atomic princi-
pal and orbital quantum numbers (radial function uzi), / is the free-electron orbital angular momen-
tum, and L is the total coupled orbital angular momentum. The above asymptotic equations apply
to both singlet and triplet scattering since the exchange terms in the close-coupling equations fall
off more rapidly than the ones included. Only the leading asymptotic term in each of the coupling
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coefficients between Fz and F& has been included, and all diagonal potential terms up to n/r have
been included on the left-hand sides of (l)-(4). The effective polarizabilities are
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where the sums also contain an integral over continuum states and atomic units are used through-
out (E in double Rydbergs).

In the vicinity of the n=2 threshold (both above and below) where Ik, l «I, it is important that the
full effective polarizability be present in the left-hand side of (2). For I.=1 it is also clearly the
dominant diagonal potential term in (3). It can also be easily seen that (for other L's) although the
r ' term is the asymptotically dominant diagonal potential term in (3) and (4), its magnitude exceeds
that of the x term only at very large distances. The role of the e's in the asymptotic cross-cou-
pling coefficients is apparently not as important as the direct coupling terms (™r' or r ~), but they
could possibly lead to appreciable interference effects. It is known that the r ' coupling between the
degenerate channels 1, 2, and 3 results in finite excitation cross sections at threshold. However,
shorter range terms will affect the actual magnitude the cross section has at threshold, and it is
this uncertainty in magnitude which characterizes the present discrepancies between theory and ex-
perirnent. The calculations of Burke, Ormonde, and%hitaker include only the n=3 terms of each
of the above infinite sums, and the ca.lculation of Taylor and Burke has ea,ch n vanishing (although
this is compensated to an unknown extent by their short-range correlation terms).

The most important n's in the threshold region (2s-p —2s, 2p —s-2p, and 2p —d —2p) may be
readily evaluated by the implicit summation technique. Here we seek bound solutions to the inhomo-
geneous equations
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In terms of these u's it may be easily verified that the n's become
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The remaining n's can be evaluated by the same technique, but we will omit these details. The or-
thonormalized solutions and the effective energy levels in (5), (6), and (7) are
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Table I. Effective polarizabilities in the n =2 excitation.

Effective
polarizabilities

Exact value
(in units of ap )

Percent contained in Burke-
Ormonde-Whitaker

calculation

Percent contained
in proposed
calculation

n(1s-p- 1s)
n (1s —p —2s }
n(2s —p- 2s}
o.' (2s p 1s )
a (2p- s 2p)
n (2P d —2P)

1.54
24.8

120.0
4.97

11.0
260.0

26.0
61.2
75.0
47.8
77.1
83.2

56.9
100.0
100.0

84.9
100.0
100.0
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where up is orthogonal to u» and us is orthogonal to u» and u„. The effective energies all lie slight-
ly above the hydrogenic level F.,= -0.05556.

It can be seen that a close-coupling calculation with exchange in which the six basis wave functions
for the target system,
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1 1

(12)

are included will have built into it the exact values of the effective polarizabilities given in (8). In
Table I we compare the exact values of the effective polarizabilities with those that arise in the Burke-
Ormonde-Whitaker and in the presently proposed six-state close-coupling calculations. Note that
the 17'%% of n(2P —d-2P) omitted in the previous calculation has a magnitude of about ten times the
ground-state polarizability of hydrogen (4.5a,').

The above procedure can be applied to any higher threshold. The applicability of minimum prin-
ciples is preserved, allowing for the systematic improvement of results, say, by the addition of short-
range correlation terms.
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