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METHOD OF CALCULATING MOLECULAR WAVE FUNCTIONS AND BINDING ENERGIES

Philip W. Anderson*
Cavendish Laboratory, Cambridge, England
(Received 19 December 1967)

A technique for adapting the quantum defect method to symmetrical diatomic molecules
is derived and applied to Li, with reasonable success.

Methods of calculating electronic wave func-
tions and energies in solids, especially met-
als, are more highly developed and more suc-
cessful than those used in the harder problem
of molecules. Perhaps the most important com-
ponents of this success have been, first, the
use of wave functions which are approximate
eigenfunctions of the Hamiltonian in all parts
of space, internal and external to the atoms;
and second, the use of unperturbed, spherical-
ly symmetric potentials in the core regions,
the properties of which can often be accurate-
ly inferred—or, in the case of the quantum de-
fect method, avoided entirely—by the use of
atomic term values.! We present here the first
use of such a method for molecular problems,
specifically a method based on the quantum
defect method® and applicable to symmetrical
diatomic, monovalent molecules (we do Li,).

Our approximation to the potential is an adap-
tation of that of Wigner and Seitz.®* We divide
space symmetrically into two halves, with one
atom in each. When the electron under consid-
eration is in the left half, we assume that the
other electron is spherically arranged about
the right-hand atom and screens it perfectly,
so that the potential is just the spherically sym-
metrical potential of the left-hand atom. Thus
the potential is spherically symmetric in each
half—spacé but has a discontinuous gradient
at the boundary plane. The experience of Wig-
ner and Seitz and later authors is that this ap-
proximation to the correlation is quite good
in metals; since in molecules correlation ef-
fects are smaller, we expect to overestimate
them somewhat. We emphasize that at large
¥ the assumption becomes exact, especially
near the boundary plane.

The exact wave function in each half-space
may be written

1
W6, 9)=, T T, (6,004, U0, ()

where Ylm is a spherical harmonic and Ul is

the radial wave function satisfying

dzUZ (1+1)
3 +\E=V(¥)- 2 Ul=0. (2)

We specialize to the 0 wave function with m
=0. The coefficients Ay, =A;5(m,0) must be
chosen to satisfy the boundary conditions y(r
—~») =0 and dy/dn =0 at the boundary plane.

The surprising thing about the method is that
the former boundary condition supplies a very
great deal of information about the wave func-
tion. At any energy not an eigenvalue for that
particular /,

Ul(r) ~ CZ(E)(V/n)dne(y/n)

x [1+0(1/7)+ -] (3)
where 1/n2=—E. We define Cj by (3); its val-

. ue is available from the quantum defect meth-

od.? It goes through zero at an energy eigen-
value for the relevant /. Since the molecular
orbital energy will seldom be an eigenvalue,
and never for all 7, most of the components
of (1) explode rapidly as »—=<. The only way
to satisfy the boundary condition then, is to
make

fcos6) = EZCZ(E)PZ(COS G)Al= 0 (4)
for all -1 <cosf<0. But even more informa-

tion can be gained by studying the boundary
plane. On this plane,

r=R/cos9,

where R is 3 the internuclear distance. Only
if

f(cos6) ~exp (— ) as cosf—0 (5)

n cosf
will the wave function converge sufficiently
rapidly along this plane. (A weaker condition,
that all derivatives of f vanish at cos6=0, is
obtained by the requirement that all exponen-
tially growing terms of the asymptotic series
vanish.) This suggests attempting to match
the boundary conditions along this plane with
a function in which the coefficients A; are de-
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termined by (5); more generally, we could at-
tempt a Laurent expansion of f(cosf) in terms
of functions all of which satisfy (5), e.g.,

2R
Jo=exp (_n cose)’

1 2R
fl—cosOexP <_ncos9>"“' (6)

The coefficients of as many of these functions
will be determined as we place conditions at
the boundary plane. [We reject discontinuous
functions for f because the spherical harmon-
ic series (1) would then converge slowly.] For
the present, we have used only the condition
at the central point of the boundary plane and
assumed that only the component f, is present:

d|1 A
24 —[—U(V)] =0, (7)
] ldr|r 1 R
>,C (E)P (cos)A
] l l l

_ 2R (_1

_exp[— . <c059—1>]’ cos6>0,

=0, cosf<0, (8)

The wave functions U; and the coefficients C;
of the asymptotic expansion are fortunately
available from the mathematical apparatus of
the quantum defect method®: C; explicitly in
terms of the quantum defects v,

CZ(E): _—l—lr(n+ 1) sinm(n -1+ Vl)’ (9)
™
and
Uy (r)=- —;l%%lil-)—cos(wl)oU l(V, E)
n T(n=1)

+ sin(m/l)lUl(af,E) (10)

in terms of the functions 00! and 1U/! tabulat-
ed by Blume, Briggs, and Brooks.* Equation
(10), of course, uses the standard assumption
of the quantum defect method that there exists
a radius R, outside of which the potential is
purely Coulombic, and which is less than R,
so that for » >R, the Coulomb wave functions
with quantum defect vj are valid. Ham’s paper?
gives interpolation formulas for the vy as a
function of energy for all alkalies.

Our preliminary calculation for Li, at a ra-
dius 2R=5.00 close to the equilibrium value
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5.05 gives an energy for the molecular orbit-
al of —-0.486 Ry as compared to —0.396 in the
free atom. The resulting binding energy for
the molecule is 2.44 eV as compared to the
experimental 1.14 eV. In the metal an accu-
rate calculation of the net Coulomb, exchange,
and correlation corrections to the Wigner-Seitz
scheme leads to a correction of +0.125 eV per
electron, which would give 2.19 eV binding
energy, but that is very much too low for the
molecule. If we assume, as is usual, that the
correlation correction in the molecule is 3

to % of that in the metal, we get a binding en-
ergy of 1 to 1.5 eV which is in excellent agree-
ment with experiment. It is hard to see how

to avoid overcorrelating with this method, but
Li, is probably the worst possible case; and

in any case there is no reason why correlation
corrections should be more difficult than in
other Wigner-Seitz calculations. A very rough
preliminary calculation gives about 0.7 eV bind-
ing energy.

The details of our wave function may be sum-
marized by giving the “asymptotic” and “bound-
ary condition” or “bonding” contributions of
each angular momentum, i.e., the contribution
CJA7 of each to the asymptotic behavior [using
(3) and (8)] and to the derivative of the wave
function [the ’th term of (7)]:

A7)
. . (1
l Asymptotic (ClAl) Bonding [Al a\7

0 0.191 0.095

1 0.170 -0.015

2 0.110 —0.054

3 0.075 —0.026

Note that a very appreciable contribution is
made by d and f states, though we believe !
=4 will be truly negligible in its effect on the
boundary condition, since [ >4 electrons do
not penetrate the centrifugal barrier. The last
column of the table illustrates the importance
to the phenomenon of chemical bonding of 7>1
states even for first-row elements. This pos-
sibility has been occasionally mentioned in the
chemical literature.

This preliminary calculation, accurate as
it is, was carried out rather easily by hand
in a few hours. Plots of the resulting wave
function, and improvements on it by fitting
over a larger region of the boundary plane,
would require simple machine work and exten-
sive use of Ham’s numerical algorithms and
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tables for Coulomb functions, but are very
much simpler and more transparent than di-
rect methods for the corresponding problems.
More important, however, are the many aven-
ues for generalization which are opened up

by it, as well as the fact that for the first time
a wave function accurate in all regions of space,
and especially in regions exterior to the bond-
ed atoms, is available with little effort for a
molecular valence bond.

*Also at Bell Telephone Laboratories, Murray Hill,
New Jersey.

IThese are the common features of the orthogonal-
ized plane-wave method and its descendants (including
the augmented plane wave), the Korringa-Kohn-Ros-
toker method, and the quantum defect method and its

ancestor, the cellular method. The two former use
plane waves fitted to match realistic wave functions in
the atom cores, the two latter Coulomb functions. A
good review of the older literature on these methods

is given by John R. Reitz, Solid State Phys. 1, 2 (1955),
and of later work by W. A. Harrison, Pseudopotentials
(W. A. Benjamin, Inc., New York, 1966).

2The most complete article, with references to all
early work, is that of F. S. Ham, Solid State Phys. 1,
127 (1955). We also draw on formulas quoted in F. S.
Ham, U. S. Office of Naval Research Technical Re-
port No 204, September, 1955 (unpublished).

3E. P. Wigner and F. Seitz, Phys. Rev. 43, 804
(1933).

‘M. Blume, N. Briggs, and H. Brooks, U. S. Office
of Naval Research Technical Report No. 260, 1959 (un-
published). These functions are equal numerically to
z/2 times the functions (J) and (N) used in the older
work following Wannier.
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The temperature dependence of the spin-lattice relaxation time of the oriented HyC~
CR 1R, radical in x-irradiated single crystals of acetyl-(d,l)-alanine has been observed
to be dominated by “spin-flip” transitions between the rotational states of the methyl
group. The energy separation of these levels has been confirmed by an analysis of the
ESR spectra of the radical. The low-temperature ESR spectra show quantum effects al-

so not previously observed.

Several papers have appeared recently both
on the effects of rotations on spin-lattice re-
laxation and on hyperfine structure.'™® In most
cases, rotations in magnetic resonance have
been treated “semiclassically” using a classi-
cal Brownian diffusion model for the rotation-
al motion while treating the spins quantum me-
chanically as in the pioneering work of Bloem-
bergen, Purcell, and Pound.” This Letter is
to report what we believe to be the first observed
case in which the effects of quantization of the
rotational motion dominate the electron spin-
lattice relaxation, as well as the first obser-
vation of some effects of the quantization of
the rotational motion of the ESR spectra.

Both the spin-lattice relaxation time (7,) and
the ESR spectra of the H,C-CR R, radical® in
x-irradiated single crystals of acetyl-(d,!)-
alanine as well as the T, of the H,C -CHR rad-

ical® in x-irradiated single crystals of /-ala-
nine were observed at 9 kMc/sec as a function
of T from 1.2 to 300°K. R, R,, and R, denote
the remaining groups of the molecules. They
make no significant contribution to the hyper-
fine structure. The T,’s were measured by
observation of recovery from pulsed saturation.
In Fig. 1, second-derivative traces of the
ESR spectrum of Hac—('lRlR2 are shown for sev-
eral values of the temperature (7). As can be
seen, the spectrum consists of four lines of
intensity ratio 1:3:3:1 at high temperatures
and of seven equally spaced lines at low tem-
peratures. One can account for this by assum-
ing either of the following: (1) that the magni-
tudes of the three proton coupling constants
have the ratios 1:2:3, and are tunneling or ro-
tating sufficiently slowly at low temperatures
so as to be distinguishable, or (2) that the ro-
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