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PHONON LIFETIMES MEASURED IN AMPLIFIERS FOR BRILLOUIN RADIATION
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(Received 15 January 1968)

The transient and steady-state behavior of stimulated Brillouin scattering in ampli-
fiers was investigated theoretically and experimentally. There is good agreement be-
tween calculations and measurements with high time resolution. Direct methods for
measuring phonon lifetimes are presented.

Recently considerable theoretical' 3 and ex-
perimental interest has been focused on the
steady-state ' and transient' problem of stim-
ulated Brillouin scattering. Most investigations
were concerned with an analysis of the oscil-
lator where a steady-state regime in liquids
is now well established. '&' In this paper we
wish to report on a number of experiments
of an oscillator-amplifier system. ' By prop-
er choice of the input signal into the amplifier
we were able to observe steady-state and tran-
sient phenomena; the steady-state gain factor
g(0)' for stimulated Brillouin scattering was
obtained using a single laser pulse. Phonon
lifetimes can be determined from g(0) or by
introduction of a definite frequency difference
between oscillator and amplifier.

The experimental setup is depicted in Fig. 1(a).
The light of a ruby giant pulse laser (operat-
ing in a TEM„mode) traverses first the am-
plifier liquid cell (length between 0.1 and 1 cm)
and then generates intense Brillouin radiation
(conversion efficiency ~90%) in an oscillator
cell. The backward traveling Brillouin light
is strongly attenuated by the use of a polarizer
and a &A, plate. For each laser pulse three
signals, the laser power I'L, the incoming
Brillouin power I'z, and the amplified Brillouin
power I'~, were measured with the same pho-
totube (using appropriate time delays). The
over-all time constant of the photodetection
system is approximately 0.3 nsec. We have
carefully investigated the change in frequen-
cy occurring during the emission of a giant
pulse laser. &' We found a frequency drift of
=Mc/sec per nsec (or approximately 350 Mc/sec
per pulse). " This value, while small compared
with the laser frequency of 4.3&10' cps, is
quite important in our investigations since the
phonon linewidths can be as small as 63 Mc/sec
(in CS,).

Our experimental system has a series of
advantages which allow a direct comparison
between theory and experimental results. (1) The
amplification is measured as a function of time

making transient and steady-state phenomena
readily observable. (2) During each pulse the
amplification is determined as a function of
instantaneous laser intensity which allows an
immediate determination of the gain coefficient
g (see below). (3) The incoming Brillouin sig-
nal I'~ can be tailor made by proper adjustment
of the oscillator. We have analyzed the ampli-
fication of slowly and abruptly rising incom-
ing signals Pf. The small value of Pt (Pt/Pl
=10 ') avoids saturation of the amplifier and
allows a comparison of our data with a small-
signal theory (outlined below). (4) Well-defined
frequency diff erences between oscillator and
amplifier are readily introduced, which pro-
vide a most direct determination of phonon
lifetimes. (5) Since our system allowed the
observation of small amplification values (&2)
with good accuracy, small light intensities
and short lengths of the amplifier cells could
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FIG. l. (a) Schematic of the experimental system.
(b) Oscilloscope traces depicting the laser pulse PI. ,
the incoming signal Pz, and the amplified signal &~
(Dv=0). (c) same as (b) with abruptly rising signal
Pz (Dv= 0). (d) Experimental gain factor of CS2 versus
time (&v = o): (1) slowly rising Pz and (2) abruptly ris-
ing Pz (e) Ratio gexp /gca] versus phonon linewidth
dv for six different liquids: solid diamond, CS2; solid
circle, acetone; triangle, methanol; solid square, n-
hexane; open circle, toluene; and open diamond, CC14.
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be used. In this way, the occurrence of other
competing nonlinear processes such as stim-
ulated Haman scattering, self-focusing, and
self-trapping was avoided.

Starting with nonlinear wave equations for
the electric and acoustic fields'~' one derives
the following equation for the Brillouin field
Qo

BG(z, t) 1 O'G(z, t) g(0)I
+ = Gzt,ez 27' etc@ 4v

where

2v' = 27 +s2m+v

and g(0) = 2mv 'y'/c'npv5v; (2)

x (2b v/5v sin2m'b. vt-cos2wb vt)], (3)

where the gain factor g(hv) =g(0)/[1+ (2b, v/5v) ].
I) is the spot size" of the laser and Brillouin
beam.

Our experimental observations are briefly
summarized as follows: (A) First, the frequen-
cy difference ~ v is kept to a minimum, then
(B) a well-defined frequency difference of hv
&150 Mc/sec is introduced.

(A) The distance S between the point of gener-
ation of the back reflected Brillouin signal and
the short amplifier cell was held small. The
experimental system was designed in such a
way that 8 was approximately 5 cm, which re-
sults in nv = 5 Mc/sec. " In Fig. 1 (b) a typical
oscilloscope trace containing the three relevant

g(0) is the steady-state gain factor. ' v and v

are the lifetime and velocity of the acoustic
phonons, respectively. 6v= 2m& is the width
of the classical Brillouin line and &v is the
frequency difference between the incoming sig-
nal and the peak of the classical Brillouin line
in the amplifier. IL and vl are the intensity
and frequency of the laser light; y is the elas-

ito-optic coupling coefficient, ' n the index of
refraction, c the velocity of light, and p the
density. In deriving Eq. (1) the assumption
(fulfilled for the materials investigated) is made
that the phonons are heavily damped, i.e. , 7

«I/v (I is the length of the amplifier) and that
the time l/c is small compared with the sig-
nal risetime. For the case of small Brillouin
signals, small amplification, and for an incom-
ing step function, the gain in an amplifier has

e form"

P /P. 1+g(b, v)P I/mwm[1+e
—t/2~

0 2

signals I'I, &~, and&~ is shown; the investi-
gated material is CS,. By proper choice of
the lens L it is possible to initiate stimulated
Brillouin emission in the oscillator at the very
beginning of the laser pulse resulting in a slow-
ly rising signal P~. An analysis of the signals

that steady-
state amplification is obtained for the total
time of the pulse. The gain factor for small
amplification gexp determined from P~/Pt
=1+gexpPi, l/ww' is plotted as a function of
time in Fig. 1(d). The time (and intensity))
independent value of ge~ indicates that we are
working under quasi-steady-state conditions.

boite different is the situation when the in-
coming Brillouin signal I'; consists of an abrupt-
ly rising pulse [Fig. 1(c)]. Such pulses are
readily generated in the oscillator by increas-
ing the focal length of lens L and initiating the
stimulated Brillouin emission at a time when
the laser pulse has reached a large fraction
of its peak power. An analysis of the signals
shows a distinct transient response of the sys-
tem. In Fig. 1(d), the experimental gain fac-
tor gexp is seen to approach the steady-state
value gexp with a time constant which corre-
sponds according to Eq. (3) to approximately
twice the phonon lifetime of the material in-
vestigated. In Fig. 1(e) the ratio gexp~/gcal
is plotted as a function of the phonon linewidth
tv= I/2wv for six liquids, CS„acetone, n-hex-
ane, methanol, toluene, and CC14. The excel-
lent agreement between experimental and cal-
culated gain factors for values of 5v between
60 and 630 Mc/sec is noteworthy.

For materials where the phonon lifetime is
unknown, the experimentally determined steady-
state gain factors allow a direct calculation
of v [Eq. (2)]. It should be emphasized that
values of w can be obtained with good accuracy
from a single laser pulse. The shortcoming
of this technique rests in the fact that we need
absolute laser intensities for the determina-
tion of v (calibrated phototubes). This difficul-
ty is avoided in the next section where a dif-
ferent technique for the determination of & will
be discussed.

(B) A well-defined frequency difference 6 v

was established in two ways: first, by increas-
ing the distance S and taking advantage of the
inherent frequency drift of the laser itself, and
second, by slightly changing the composition
of the medium in the oscillator; i.e. , the Brill-
ouin shift vB-—2vtvn/c is varied by changing
the values of v and n Similarly . to Sec. (A),



VOLUME 20, NUMBER 8 PHYSICAL REVIEW LETTERS 19 FEBRUARY I968

.20
n

.15-
X

.10-
LJ

/
2/I
/

/
I 1I

I I

5 10 15 20
TIME Cnsec 7

—1.0 o
CL

l/l cf

—0.5
CL
X

Ill 4Pcs

I I 0
-150 -100 -50 0 50

FREQUENCY hv CMcps7

FIG. 2. (a) Experimental gain factor of CS2 versus
time for &v =75 Mc/sec: (1) slowly rising Pi and

(2) abruptly rising Pz. (b) Normalized experimental
gain factor of CS2 (circles) and a mixture of 97.5% CS2
and 2.5% (by volume) CCI4 (triangles) (T = 20'C).

our time-resolved observations have to be sub-
divided depending upon the pulse shape of I' .
For a slowly increasing signal I'i again a steady-
state amplification is found. But —as expected
—the observed gain factor gexp is reduced
Lsee Fig. 2(a)] by the Lorentz factor [I+ (2d v/
5&)'] ' [compared with the gain factor g(0) with
b, v=0]. When an abruptly rising incoming pulse
I'z was used, an oscillating transient signal
I'~ was observed. A typical time-dependent
gain factor is presented in Fig. 2(a). Such an
oscillatory behavior is predicted from the small-
signal theory outlined above. In fact the agree-
ment between the experimentally observed os-
cillation of gexp and a more extended calcula-
tion is excellent when the true pulse shape of
the signals is taken into account. "

The most direct method of determining the
phonon lifetime consisted in using a slowly ris-
ing pulse I'~ and a well-defined ~v value by chang-
ing the material in the oscillator (CS,:CC1,
mixtures's). In Fig. 2(b), curve 1, the normal-
ized experimental steady-state gain factors
for CS, are plotted as a function of ~v. The
curve drawn through the experimental points
provides us —after the laser and incident sig-
nal linewidths of approximately 20 Mc/sec each
have been taken into account —with a value of
the phonon lifetime of 7 =2.V nsec which com-
pares favorably with the value of v =2.5 nsec
obtained from classical Brillouin measurements. "
The accuracy of our experimental technique
is shown quite vividly in curve 2 of Fig. 2(b),
where a mixture of 97.5% CS, and 2.5% (by vol-
ume) CC14 was investigated. The decrease of

phonon lifetime in the mixture to 7 =1.8 nsec
is easily deduced from our data.

Our investigations clearly indicate that (es-
pecially for substances with long phonon life-
times) a high time resolution is important for
the investigation of stimulated Brillouin scat-
tering. Kith time integrating devices —most-
ly used in previous experiments —existing tran-
sient phenomena are not recognized and accur-
ate determinations of phonon lifetimes are not
generally possible.

The authors wish to thank I. Reinhold for the
experimental assistance.
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