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~Relaxation of the assumption that m0, 2;g =m~ and hence that tg & (t) =t introduces, in general, the unknown
parameters m0, 2;~ into g~ ' (t) and pg ' (t). However, since it is necessary only to cover the range from
0 to 0.73 for fg 2 (t)] —fg~ (t)], a linear parametrization for g ~ (t) vs t with a small slope should still be rea-
sonable, even though this slope would no longer be simply (m~1. s) 2 but would also depend on (m() 2.„)/rnff Ou.r
result for f (t) would nevertheless remain unchanged because, as seen from Eqs. (14) and (15), f (t) does not de-
pend on the slope.
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Total differential cross-section sum rules for forward neutrino (antineutrino) scatter-
ing by nuclei are derived using the weak charge commutation relations conjectured by
Gell-Mann on the basis of the quark model, and the closure approximation. These sum
rules can now' be tested with neutrino (antineutrino) beams available at Brookhaven Na-
tional Laboratory and CERN.

In this Letter, we wish to apply the method recently developed' in the calculation of the total mu-
on capture rate in He' to derive sum rules for the total differential cross section for forward scat-
tering of neutrinos (antineutrinos) by nuclei. In applying the method we make use of the modifications
suggested by Primakoff. ' The sum rules we derive are the following:
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where G=(1.02/m&') x10 ' and cos8C =0.98. In the above, do(~ or ~)(A, I, I„' 8)/d cos8 is the total
AS=0 differential cross section for the reaction (vl or Pl)+N~-(1 or I)+Nb. In our notation, N~
= (A, I, I,) is the I, member (I, is the third component of isospin) of a nuclear isospin multiplet of iso-
spin I and mass number A, and Nb is any allowed final state of hadrons with zero strangeness. The
angle 8 is the angle of the final lepton l =e or p, relative to the original neutrino (antineutrino) direc-
tion, v is energy of the incident neutrino (antineutrino), and m& is the proton mass.

%e now briefly sketch the essential parts of the derivation, leaving details for a future paper.
Using the current-current-type Hamiltonian for weak interactions, one can show that

do (N; 8)
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We are assuming that the lepton mass can be neglected so that its four-momentum is simply pl —= (1, il).
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In the above,
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The states INa) and INl, ) have spins Ja and Jl, and masses ma and ml„respectively. The summa-
tions in Eq. (5) extend over the third components of the nuclear spins Ma and Ml, . Finally, V~ (R;)

and A (~)(x) are the vector and axial-vector, strangeness-conserving, weak hadron currents, re-
spectively. We have assumed the initial nucleus is at rest and set pa =0.

Introducing'

q (m;T, v) =—Jg (x, i=0) exp[+i(v-l(m )lj x]dx,
(*) .- - (+)-

where l = T/l, and using the closure approximation, ' one can show that

In the above,
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The notation ( ~ ~ ) in Eqs. (9) and (10) denotes a suitable average over all possible final states )Ni).
Consider the isospin doublet (IHe'), IH')). We have

x (H ) =(H;p, =DID ((m ) „T,v)Q ((m ) „'T, v) IH;p, =0).

Using the relations
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where I, is the first component of isospin, one can easily show that
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nP
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where'

=(H;p =0~ Q ((m );-1-v)Q ((m );-1, -v) IH;p =0)

-(H;p, =OIQ ((m ) „I,v)Q ((m ) „1,v) iH;p, =o).

Combining Eqs. (8), (11), and (13) we find that
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If we restrict ourselves to forward scattering, i.e., 8=0, Eq. (15) reduces to
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In writing relation (18), we have assumed in the spirit of the closure approximation that (mf, )H~ or He3
-mH3 « v and (mfa)H3 or HeS-mH3«mH3. Using the equal-time commutation relations for the inte-

grated weak current J (~) conjectured by Gell-Mann' in the context of the quark model, Eq. (18) be-
comes
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Relation (19) can be immediately generalized to apply to the case of an initial nucleus of arbitrary
isospin I, so that Eq. (1a) follows. It is easy to show that the corresponding sum rule for antineutri-
no scattering is similar to that for neutrino scattering as indicated in Eq. (1b).

We wish to make the following remarks. '

(i) Nonzero contributions to sum rules come only from the equal-time commutators

[fV '+'(x, O)dx. , fV & '(y, 0)dy. ]-= [f~ '+'(x, O)dx. , fA '(y, o)dy]=2I. ,

where j=o, 1, 2, 3, Vo
) =-i V4 ), and Ao( ) =-iA4( ).

(ii) The right-hand side of Eq. (1) depends on only one nuclear parameter, namely I,.
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(iii) Relations (1) apply to both ve and v& scattering with an electron and a muon in the final state,
respectively. Nevertheless, since we have made the approximation m~' «l', and the assumption
(my)~-m~ «v, the domain of validity will be different in the two cases. For ve scattering, we expect
the sum rules to be valid to a good approximation for neutrino energies of 100 MeV or more. Such

ve beams of reasonable intensity are not available at present. In the case of v& scattering, the sum
rules should be valid, e.g., for incident v& energies of 1 BeV or more. Beams of v& of reasonable
intensity and appropriate energy are already available at Brookhaven and CERN, so that tests of
Eq. (1) for v scattering are already feasible. This is one of the advantages of sum rules (1) over
the other similar' sum rules that have been derived and can only be tested at energies of at least
5 BeV.' The second advantage is that sum rules (1) apply to v scattering by complex nuclei, which
corresponds to the usual experimental situation, while the sum rules derived in Ref. 8 concern neu-
trino (antineutrino) scattering by nucleons.

(iv) In only a few cases such as that of the doublet (~He'), 1H')) are both nuclei appearing in sum
rules (1) relatively stable, and experimental tests of the relations possible. Nevertheless, in many
cases only one of the nuclei will be stable, and relations (1) can then provide a lower limit for one
of the cross sections.

(v) Goulard and Primakoff" calculated the "elastic" scattering cross sections do(v)(A; 8)/dcos8
and do(v)(A; 8)/dcos8 using the impulse and closure approximations. For the cases in which we could
compare results, e.g., for (]He'), ~H')) and (]Si"), ]Al")), our cross sections are larger than theirs
by a factor of about 1.7. This difference is due to the fact that, by using the current commutation
relations, meson-exchange corrections as well as "inelastic" scattering corrections (e.g., pion pro-
duction) are included in our results, while such corrections are neglected in Ref. 10.

(vi) The cross sections in Eq. (1) do not include bS=1 processes. The inclusion of these transi-
tions is not expected to change the cross section by much more than 4% because of the factor sin'8
= 0.04 involved in the strangeness-changing reactions.
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