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de HAAS-van ALPHEN EFFECT AND FERMI SURFACE IN Pt t
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The Fermi surface for both the s —and d-like carriers in Pt has been determined by
observation of the de Haas-van Alphen effect. The Fermi surface is in good agreement
with recent augmented-plane-wave band-structure calculations.

A detailed knowledge of the Fermi surface
in transition metals is of considerable exper-
imental and theoretical interest at the present
time. Of particular interest is a metal such
as platinum, where it is known from the heat
capacity'&' and the magnetic susceptibility' &'

that the density of states at the Fermi surface
is anomalously high.

One area of theoretical interest centers around
the calculation of the energy bands themselves.
Augmented-plane-wave calculations are known
to be capable of yielding reasonably good en-
ergy bands, and a comparison with the recent
Pt calculations of Andersen and Mackintosh'
will be presented. Another approach to band-
structure calculations (which is the view held

by the authors) is to find an appropriate "fit-
ting procedure" so as to generate the energy
bands directly from the experimental data.
The "interpolation scheme'" or Korringa-Kohn-
Hostoker method'~' seem particularly suited
to such a program. As a first step, we have
collected an exhaustive set of de Haas-van
Alphen (dHvA) areas in Pt, only a small part
of which can be presented here. The detailed
cyclotron effective-mass measurements have
been presented in the preceding Letter.

Another area of current theoretical research
centers around the "many-body" contributions
to the density of states. In addition to the well-
known electron-electron and electron-phonon
contributions, the recently suggested exchange
enhancement '2 due to short-lived magnons
may play a quantitative role. The starting point
for any quantitative estimate of these effects
would involve a complete set of "single-parti-
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FIG. 1. The s-band extremal areas observed in Pt
for H in the (110) plane.

cle" energies which could best be derived from
the present experiment.

We report here measurements of the extrem-
al areas taken using the field-modulation tech-
nique, a 60-ko solenoid, and temperatures
down to 0.3'K

Figure 1 shows the extremal cross-section-
al areas for field directions in the (110) plane
associated with the s-Like electron surface
centered on the point I' in the Brillouin zone. "~'
The surface is only slightly distorted from a
sphere by small bumps in the [100]and [111]
directions. These distortions result in an ad-
ditional area extremum for field directions
near [111], the upper area branch in Fig. 1

corresponding to the noncentral area extremum
while the lower branch corresponds to the cen-
tral one.
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Figure 2(a) shows the angular dependence
of the extremal areas for the set of d-like el-
lipsoidal hole surfaces centered on the points
X of the Brillouin zone. If the field were ro-
tated exactly in the (110) plane, the two near-
ly coincident area branches would be degener-
ate. The splitting of this degenerate pair is
a measure of the deviation of the magnetic field
out of the (110) plane and indicates that this
deviation never exceeds 2'. The data fitted
quite well a model for the surface [solid lines
in Fig. 2(a)] consisting of ellipsoids of revolu-
tion, prolate along the I'X line, with c/a ra-
tio equal to 1.56."

The third sheet of the Fermi surface, an
open d-like hole surface, has the topology of
cylinders extending along the [100]directions
and intersecting in pairs at the points X of the
Brillouin zone. Figure 1 of I shows a section
of this surface, as calculated by Mueller, '
in the extended zone representation.

Figure 2(b) shows the angular dependence
of the extremal areas for the n orbit [Fig. 1(b)
of I]. This area branch is only observed with-
in 30' of [100]disappearing abruptly although
the effective cyclotron mass has the relative-
ly small value of 2.1. Such behavior indicates
that, due to the geometrical features of the
surface, the e orbit only exists within 30' of
[100] in the (110) plane. Near [110]three ex-
tremal area branches (p, y, and 6 in Fig. 1
of I) are predicted from the band-structure
calculation of Mueller, "but only the two area
branches shown in Fig. 2(c) were observed.
The unenhanced cyclotron effective mass for
the central junction orbit P was calculated~ to
be 6.23, a mass far too heavy to be observed
in the present experiment. For this reason
the upper branch in Fig. 2(c) has been identi-
fied with the noncentral junction orbit y and
the lower branch with the cylinder orbit 5.
The splitting of the two degenerate 5 area branch-
es expected for field directions close to [110]
but not in the (110) plane was observed in an
additional experiment in which the y area branch
remained single valued. This reinforced the
identification of these area branches.

Andersen and Mackintosh have calculated
the extremal areas of the 1 -centered electron
surface and find the values 0.758, 0.842, and
0.676 for the magnetic field in the [100], [110],
and [111]directions, respectively. The cor-
responding experimentally observed areas
are 0.778, 0.865, and 0.695. The area of the

n orbit on the open-hole surface for the field
along [100]and the y orbit for the field along
[110]were also calculated by Andersen and
Mackintosh. For the o. orbit the theoretical
and experimental areas are 0.0713 and 0.0743,
respectively. For the y orbit, the theoretical
area is 0.217 compared with the experimental
value of 0.218. Thus, while the agreement is

4.2

~ 4.0
I

O
3.8

LLI
LL'

3.0„~
O' 10 20 30' 40 50' 60 70' 80' 90'
100 I I I 110

ANGLE

94-

.92-

.90-

.88-

I I I I I I I . I I

.26-

.25-

.24-

I I I I I I I

36-
O

I
D .84-
bJ
K .82-

.23-

0
.22

LIJ
K

.21-

~ ~ ~

.80-

.78-

.76-

.74-
I I I I I I I I

—
I 0 0 10 20'

IOO'
ANGLE

I

30'

.20-

,19-

.18-

71
70' 80 90 IOO' I IO

I IO
ANGLE

(c)

FIG. 2. (a) The d-band "pocket" extremal areas for
.H in the (110) plane. (b) The open d-band extremal
areas, associated with the o. orbit, observed for II
near [100] in the (110) plane. The solid line shows the
angular variation for a cylinder. (c) The open d-band
extremal areas, associated vrith the y and 6 orbits, ob-
served for H near 1.110] in the (110) plane.
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satisfactory, the theoretical areas are system-
atically smaller than the corresponding exper-
imental ones. Both holes and electrons are
similarly affected; so a simple change of the
Fermi level is not sufficient to correct all the
areas.

There are four important effects which de-
termine the energy bands in a transition met-
al." These are the d bandwidth, hybridization,
s-d shifts, and the spin-orbit coupling. Of

these the spin-orbit coupling and s-d shifts
are the most important, since the d bandwidth
and hybridization seem to vary little between
various calculations. Thus, to bring the cal-
culations into agreement with the experimen-
tal data, it appears likely that corrections in
the s-d shift and spin-orbit coupling in addition
to an adjustment of the Fermi level will be
r equir ed.

We would like to thank J. S. Tait and W. Rose-
vear for aid in equipment construction and da-
ta aquisition.
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In an ideal type-II superconductor, between
the fields H~~ and H~2, a regular lattice of
current vortices or "fluxoids" is formed. If
a current I is applied at right angles to the ap-
plied field H in an ideal, defect-free supercon-
ductor, it is thought that the fluxoid lattice un-
dergoes a translational motion at a uniform
velocity in a direction mutually orthogonal to
both I and H. ~ The fluxoid motion gives rise
to an electric field which is observed as a re-
sistive voltage drop, V, in the direction paral-
lel to I. This is the so-called "flux-flow" re-
sistivity. '~3 Theoretically, one expects the
ideal behavior to be Ohmic, i.e. , V=IB, where
R depends only on IJ. ~' In real superconduc-
tors, one generally observes nonlinear I-vs-
V curves and (equivalently) noncurrent-inde-
pendent R -vs-JJ curves.

The deviation from the "ideal" linear behav-
ior has been the subject of much discussion2~
and some controversy, '~" though the popular
view appears to be that the departure from lin-
earity is due to interactions with the surface
and with volume defects (e.g. , dislocations).
These "pinning" forces are particularly effec-
tive at low values of I where the electromag-
netic forces on the fluxoid are relatively small.

The purpose of this Letter is to report recent
experiments in which we have been able to achieve
linear V-vs-I and current-independent R -vs-
IJ behavior and in which we find that this "ideal"
resistivity is in excellent agreement with pre-
dictions of the recent microscopic theory4~'

over a large variation of the dc current. The
depinning of the fluxoids is achieved by super-
imposing on the transverse dc magnetic field


