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A theoretical expression for the form factor f (t) in Kts decay is obtained from a sum
rule based on the hadron weak-current commutation relations. The "leakage" matrix
elements are found to make an important contribution to f (t)

Recent experimental studies of the K~3 decays lead to the following conclusions'.
(1) No important discrepancies exist with respect to the predictions of the leptonic AI= 2 rule; in

particular, the form factors f~(t) =f+(-[pK—p~]') are essentially the same for K+- m'+1++ v and KI'
—m++ l++ v over the entire physical region of t: mt2 ™K™~).'

(2) With the definitions A = [mK'/f+(0)][d f+(t)/dt]t 0, A+I ~ ™K/2f+(0)][d'f+(t)/dt']t 0, ~ ~ ~, one
obtains from the observed pion momentum spectrum in Ee3 the values A+ = 0.25 + 0.08, A+' —-0, A+"
~0 ~ ~ ~

(3) Assuming A.-, A. ', ~ to be not too large, the values of $ =—f (0)/f+(0) calculated on the one hand

from the observed values of the K&3 muon polarization, and on the other, from the observed values
of the K&3/Ke3 branching ratio, are mutually inconsistent, viz. , $ 1= —1.0+0.2 and )br=0. 6+0.3;
moreover, the uncertainties in the measurements are such that no trustworthy values of A. , A. ', ~ ~ ~

have yet emerged.
The experimental values of A+, A.+', ~ ~ ~, $, and A.-, A. ', ~ ~ ~ may be compared with available the-

oretical values. Thus, for example, theK*, /&pole modelforf+(t) predicts 1+=0.32, A+' ——0.10,
(=0.15, A. =0.78, and A. '=0.46 for m(K*) =890 MeV and m(&) =730 MeV.

To throw further light on the values of $, A.-, A ', ' from a theoretical point of view, we develop

a procedure based on a recent elegant paper by d'Espagnat and Gaillard, ' who applied the Fubini-
Furlan sum rule to the calculation of f (t). The essential feature of the d'Espagnat-Gaillard cal-
culation is to make explicit a t dependence of the K- m matrix elements of &yVy~ and &pe, the di-
vergences of the hadronic b, S=&Q polar-vector weak currents, which has hitherto not been pointed
out. This t dependence arises in part kinematically from the mass difference of the pion and kaon
and in part dynamics. lly from the so-called "leakage" matrix elements of B~Vj, ~ and &~V~ which con-
nect a given pion state to states outside the [w, q, K) pseudoscalar octet.

We begin our discussion with the hadron weak-current commutation relation

(vlf Vo (x, 0)d'x, JVO(y, 0)dylan' ) =(m IQ+Flm ) =1.

Note that the contributing kaon state is IP'), and label the contributing states outside the (m, q, Kj
octet as X~"'(Q =O, S= —1) and Xz~'(Q =2, S=+1). The Fubini-Furlan (FF) sum rule then follows im-
mediately from Eq. (1), viz. ,

where

P (t)[f(t)] +Z„P„(t)[g„(t)l-Z„P„(t)[g„(t)]=1, (2)
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and

4E ' '(t)E (t)(m —m ) 'I(Ã+IB v "Ix ' ') I'= [g ' '(t)]2,
n ~ O;n n

=
n

(0) (t)]2
—1

n
(m 2-m ')'

P "'(t)=
n 4E "'(t)E (t)[E ' '(t) E—(t)]' (m ' m—)'

n m n n' — On

(0) (t) E (t) [ IP(t) I2 +m 2]1/2 [ IP(t) I2 +m 2]1/2 [t (0)(t)]1/2
n 7t' 0; n 'lr n

(4)

with mO. ~~m@+mz and a, sum implied over spin orientations of I'Xz' ') in the definition of the "leak-
age" form factor g (0)(t) if this spin is &0; analogous expressions for g~')(t) and Pz~'(t) can be ob-
tained by replacing &~V~~, IX~"'), and mo. i(by &~Vy, IX2l"'), andm2. ll, respectively. Thus we can
write the FF sum rule as

f(t) {1 t2/(m 2 m 2)2+ [g(2)(t)]2 [g(0)(t)]2 }1/2
K 7t'

(5)

where

tl„"'(t) p
' '(t)

[g"'(t)j'-=) "
[g "'(t)]' [g "'(t)j'-=). "

[g "'(t)]',.'p( )(t) " ' " . ( )(t) "
and where it remains to specify the "leakage" functions g@'(t) and g"'(t).

We note first that f+(me') is given experimentally by'

0 g5&f (m )&1 05
+ e

(7)

so that, to sufficient accuracy, we can take

[g")(o)j'-[g"'(0)j'=[f(o)1' 1=[f,(o)j' 1 =o.

Further, the Callan-Treiman (CT) relation'

f(t=m 2; p '= —m 2;p 2=0)=a /a =1.28,

(8)

with aK, a~=K~2, ~~2 decay amplitudes, respectively, when extrapolated onto the pion mass shell ac-
cording to

yields

f(t =[m —(p ')'/ j', p 2= —m 2; p ') =1+(a /a —1)[1—(—p ')'/'/m ]

f(t=[m —m ];p '= —m; p 2= —m 2)=—f([m —m ]') =1+(a /a -1)(1-m /m ) =1.20,

(10)

f(t =[m -(-P ')'/']'P '=-m 'P ') =f(0' —m' —m') =1— K-- ~ K
--

Klim
( p 2)1/2

m rn

Thus, using Eqs. (11) and (5), we have

a )( m )-' (1—m /m
{g(2)([m —m ]')]—{g(0)([m —m ]')j'= 1+ —1)/ 1 —

[

—1+I
[

—= a=0.73,
K )T K )r a /q m / (1+m m

our extrapolation being the simplest which can be arranged to satisfy the SU(3) condition

(12)

(13)

consistent with the SU(3) expectation that [g')(t)] —[g( )(t)] is O((l-m„/mIf. )2).

With [g()(t)] —[g"'(t)] varying from 0 to 0.73 as t varies from 0 to (mIf—m~)2, we parametrize g(0)(t)

and g()(t) as linear functions of t, viz. ,

a'"(1+t/(m )')
(0)~ (2) t

+1;n
{[1+(m -m )2/(m )']2—[1+(m —m ) /(m )']' jl/ (14)
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which satisfy the "constraint" Eqs. (8) and (13) identically for any values of the "average" masses
(m+1 „). The linearity of the g'" "'(t) with t in Eq. (14) corresponds to the assumption that, the im-
portant m0 2. „are not too different from m& so that t ")~ '(t) =f, and to the further assumption thatn
the Q =S=TI intermediate states !X+'7)' ) and!X~@'m ) which contribute predominantly to the g@)~+'(t)

have masses m~y z large compared with m~. This last assumption also justifies the neglect hence-
forth of terms 0( (mfa —m~)/(m+I. z)] ).

Combining Eqs. (14), (5), and (3) we obtain and expression for f (t) which, as expected from SU(3),
is O(l-m~/mfa), and which constitutes our basic result, viz. ,

(m
'—m ')]' t' at

K
~ .-+ f(t)y-

Equation (15) shows that, within the linear, large m+1. z approximation for p+)~"'(t), the form fac-
tor f (t) contains no undetermined parameters. For convenience, we record the particular values

1+m /m 0 ( m ) ( m l ( m

([m -m ) )= " 1+ —1
)

i —
)

— &+& )& —
) +& ')& ——

) + I=D)2, (16)
K n 1-m m a ), m ) +( m j + ! m j

m ! & m

f (0)=gf (())=(= 1-, 1

—1 I y =0 42
+ m ' 2 m ) +

(1 —m '/m 2) 1( m ' ' a'f m

2( m' 8), m +
(18)

f ([m~-m ]')-f (0)
(x )=—

(1-m /m )' (20)

(21)

Equation (21) shows, in view of the uncertainties both in the measured values of a&/a~, X+,X+, ~ ~ ~,

and in the predicted values of X,A. ', ~ ~ ~, that it is very difficult to extract a meaningful value of

$ directly from the CT relation.

where we have used the above quoted numerical magnitudes of a and f+(0), A+, X+', ~ ~ ~ . We note that
these values of $, A, A. ', ~ ~ ~, A+, A+', ~ ~ ~ reproduce the observed K&3/Ke3 branching ratio but pre-
dict a K&3 transverse polarization roughly twice that observed.

In conclusion, we remark that neglect of the "leakage" matrix elements corresponds to setting
g""'')(t) =0, and so to setting a=0 [Eqs. (3)-(6) and (13)]which reduces the expressions for f (t),
$, and A, in Eqs. (15), (17), and (18) to those already given by d'Espagnat and Gaillard. ' It is clear,
however, that neglect of the "leakage" terms is quite inconsistent with the CT relation of Eqs. (9)-
(ll), since setting g@" '(t) =0 requires that f([mls. -m~]') =0.82 [Eq. (5)] rather than 1.20 [Eq. (11)].
We also note that combination of the CT relation in Eq. (11) with Eqs. (3) and (8) yields

1+m /m ([1+(a /a —l)(1—m /m )]—[I+A. (1-m /m )'+A. '(1 —m /m )'+ ~ ~ ~ ]f
1-m /m [I+~ (1-m /m )'+~ (1-m /m )'+" ]K K — p K
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result for f (t) would nevertheless remain unchanged because, as seen from Eqs. (14) and (15), f (t) does not de-
pend on the slope.
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Total differential cross-section sum rules for forward neutrino (antineutrino) scatter-
ing by nuclei are derived using the weak charge commutation relations conjectured by
Gell-Mann on the basis of the quark model, and the closure approximation. These sum
rules can now' be tested with neutrino (antineutrino) beams available at Brookhaven Na-
tional Laboratory and CERN.

In this Letter, we wish to apply the method recently developed' in the calculation of the total mu-
on capture rate in He' to derive sum rules for the total differential cross section for forward scat-
tering of neutrinos (antineutrinos) by nuclei. In applying the method we make use of the modifications
suggested by Primakoff. ' The sum rules we derive are the following:

do (A, I, -I; 8=0) do (A, I,I; 8=0)(~) . (~)

d cos8 d cos8
=—8I3

2 2 2
G cosO v

(I, & 0);

do (A, I,I; 8=0) do (A, I, -I; 8=0)(~) . (P)

=—BI~
d cos8 d cos0

2 2 2
G cos6) v

(I, &0); (lb)

where G=(1.02/m&') x10 ' and cos8C =0.98. In the above, do(~ or ~)(A, I, I„' 8)/d cos8 is the total
AS=0 differential cross section for the reaction (vl or Pl)+N~-(1 or I)+Nb. In our notation, N~
= (A, I, I,) is the I, member (I, is the third component of isospin) of a nuclear isospin multiplet of iso-
spin I and mass number A, and Nb is any allowed final state of hadrons with zero strangeness. The
angle 8 is the angle of the final lepton l =e or p, relative to the original neutrino (antineutrino) direc-
tion, v is energy of the incident neutrino (antineutrino), and m& is the proton mass.

%e now briefly sketch the essential parts of the derivation, leaving details for a future paper.
Using the current-current-type Hamiltonian for weak interactions, one can show that

do (N; 8)

d cos8 ~b
(N -Nb', 8) (Gcos8 )

(~) 2

d cos8 2TI (W +1)~b (E-Vcos8) o.g ni) a b
'

We are assuming that the lepton mass can be neglected so that its four-momentum is simply pl —= (1, il).


