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at about 8'K, and pointed out that it can be con-
sidered as an indication of the occurrence of
a lower transition which had been known in deu-
terated methanes but not in methane until then.
Now it may not be pertinent to identify the ob-
served anomaly with the predicted lower tran-
sition of our normal mixture at about 14'K,
since this is somewhat too high and this should
be sharp as it is in deuterated methanes. On
the other hand, it does not seem unreasonable
to suppose that the anomaly reflects collective-
ly all the effects due to possible transitions
and interspecies conversion below the upper
transition in our equilibrium mixture.

Quite recently Hopkins et al. have reported
that nmr intensity in solid methane increases
with time when the sample is maintained at
various temperatures between 4.2 and 10'K,
if it contains a small amount of oxygen, but
that no appreciable change is exhibited if the
sample is pure. According to their interpre-
tation that this is evidence for the oxygen ca-
talysis of nuclear-spin species conversion,
our normal mixture is nothing but pure meth-
ane and our equilibrium mixture corresponds
to methane containing oxygen. Consequently
it is highly desired to carry out further exper-
iments, by means of samples of controlled
oxygen content, with the purpose of testing
our predictions presented in this note.

Details of the present calculations will be
published elsewhere in a series of papers.
The authors wish to thank the computer centers
at Kyoto University and University of Tokyo
for services and computer time made available
for this study.
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DIRECT, TWO-PHOTON PHOTOCARRIER GENERATION IN ANTHRACENE
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We wish to report evidence for the genera-
tion of mobile charge carriers in anthracene
crystals by a direct, two-photon transition
to a conducting or autoionizing state. We have
measured the intensity dependence of photocur-
rent and prompt fluorescence excited by 40-
nsec pulses of light at 597 nm (2.07 eV), 571
nm (2.16 eV), and 525 nm (2.35 eV). We find
a square-law dependence for both quantities.
Since the prompt fluorescence is directly pro-

portional to the number of singlet excitons, '
our results are not consistent with singlet-
photon or singlet-singlet mechanisms for car-
rier generation.

Figure 1 shows the experimental data. The
excitations at 59"| and 525 nm were obtained
as the first and second anti-Stokes stimulat-
ed Raman lines when a giant-pulsed ruby la-
ser beam from 10- to 20-MVf peak power was
focused by a 5-cm lens into liquid nitrogen.
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decay rate, an upper limit of 5& 10 ' cm' was
calculated for the triplet photoionization cross
section at 525 nm. This value is 20 times small-
er than the one reported by Holzman et al. ,

'
but these authors used excitation which extend-
ed down to about 472 nm. Perhaps the small-
er available kinetic energy, relative to a thresh-
old at 4 eV, with two 525-nm photons results
in more loss of carriers by immediate recom-
bination than at the shorter wavelengths.

Crystals were also exposed to stimulated
Raman pulses at 467 and 421 nm, which are
the third and fourth anti-Stokes lines from liq-
uid nitrogen. At both wavelengths, the fluores-
cence was essentially a linear function of the
intensity, indicating that one-photon excitation
from a vibronic level of the ground state was
dominant. The photocurrent had an approxi-
mate square-law dependence, which is expect-
ed for either singlet-photon or singlet-singlet
interaction mechanisms for carrier produc-
tion. From Nakada's values for the absorp-
tion coefficient at 421 nm and Kepler's sing-
let photoionization cross section, ' the expect-
ed photocarrier generation at this wavelength
was calculated to be 3 && 10' cm ' for an exci-
tation intensity of 110 W cm '. A measured
value of 3.2&& 108 cm was found. Calculations

based on the exciton-exciton interaction mech-
anism and the measured generation coefficient
of Silver et al.' yielded currents larger by fac-
tors from 15 to 75, depending upon the polar-
ization.

The author wishes to thank Donald C. Hoest-
erey, of these Laboratories, for many help-
ful discussions and suggestions.
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Measurements of the ultrasonic attenuation and velocity near the magnetic critical
point in the cubic Heisenberg antiferromagnet RbMnF3 have been performed over a wide
range of frequencies. The ultrasonic attenuation coefficient e is divergent at T~ and
obeys the law n ~ ~~(T Tc) 0' ' 2 for—two decades of reduced temperature T/Tc 1. —

Considerable theoretical attention has been
focused recently on the behavior of the ultra-
sonic propagation near the magnetic critical
point. ' ' As the transition temperature of a
magnetic solid is closely approached, the fluc-
tuations of the magnetization give rise to an
increasing cross section for spin-phonon scat-
tering. This manifests itself physically as a
growth of the absorption of the ultrasoriic waves.
Although most theories predict the attenuation
coefficient n to be singular at the critical tem-
perature T~ there appears to be no agreement

as to the strength of the singularity. Further-
more, it is not yet clear what differences, if
any, exist between the critical behavior of n
for the ferromagnet and antiferromagnet. The
experimental data on these quantities have been
sparse. In antiferromagnetic MnF, an inves-
tigation' showed a frequency-dependent anom-
aly at T~ but no quantitative conclusion could
be drawn about the existence of a singularity.
Quite recently, measurements of n in the me-
tallic ferromagnet gadolinium' have indicated
a singularity of the form n~ (T-Tc) 'a. We


