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The results of a more thorough treatment
of the data presented here will be published
later along with data on other sources obtained
during these flights and a later flight on 27 June
1967.

%e are very grateful to the staff of the Na-
tional Center for Atmospheric Research sta-
tion at Palestine, Texas, for their hospitali-
ty and their successful conduct of the balloon
flight operations. Philip Morrison and Allen
Womack helped to improve the clarity of this
paper.
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It is shown that the infinite sequence of Regge cuts previously found in perturbation
theory leads to high-energy behavior of scattering amplitudes with a power of the ener-
gy that is independent of the momentum transfer whenever the total cross sections are
asymptotically constant.

It seems now well established that repeated
exchange of Regge poles generates cuts in the
complex angular-momentum plane. ' If the in-
tercept of the Pomeranchuk trajectory is strict-
ly equal to 1, then exchange of several Pomer-
anchuk poles and a given trajectory a(t) leads
to an infinite number of branch points that in
general accumulate' for any t &0, at o. (0). Up
to now the current opinion seemed to be that
nothing could be said about the corresponding
contribution to the high-energy behavior. Nev-
ertheless, we are going to show that, if one
takes all the cuts into account, then, and for
any t &0, the scattering amplitude T(s, t) behaves
asymptotically like s&(")(lns)P(t). , i.e., with
a power that is independent of t, irrespective
of whatever the value of the jumps over the cuts
may be. For definiteness, we will present the
explicit analysis for the case when o.(t) is the
Pomeranchuk trajectory itself, and later on
comment on other cases.

(1) Pomeranchuk trajectory. —Here, the ex-
change of n Pomeranchuk poles gives a cut with

a branch point located at

n (t) =nn (t/n ) n+ l. -(n) 2

c P

Since we assume, as usual, that o.p(0) = 1,
it is then clear that for any t &0 one bass

lim o. (t)=a (0)=1.
c P (2)

Accordingly, the contribution of such cuts to
the scattering amplitude in the s channel is,
at high energy, of the form

f „,d t s g (f) = T(s, t),
l

where g'~(l) is essentially proportional to the
product of the signature factor times the sum
of the jumps across the cuts. We remark that
by virtue of (2), gt(l) cannot vanish identical-
ly in any interval 1 & l &1-60, 5,4 0 fixed, for
any t &0. The desired result will be proved
rigorously from formula (3) by reducing the
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problem to the following theorem on Laplace
transforms (Doetsch4):

Theorem. —If

P(x) = f dy e y(y),

p(y) bounded at y =0, and if

lim suplnlg(x) I/x=-v, v)0,
X

T(s, t)=sf dye g (I—y). (4)

Since the integral in (4) is clearly bounded,
it follows that lim sup[in i T i jlns] exists and

is (1. Qn the other hand, applying the theo-
rem, and since g(1—y) does not vanish iden-
tically in a neighborhood of y = 1, we get that
the lim sup has to be ~1. Therefore, we have
proved that

ln IT(s, t) i

lim sup - — '- — = 1, t (0.
lns

(5)

then y(y) vanishes identically if y &v. The
theorem is proved by using the inverse Laplace
transform, and applying suitable majorizations,
to show that whenever y &v,

f, dv ' p (y ') =- 0.

In our case, the integral in (3) may be reduced
to a Laplace transform by defining x = Ins and
making the change of variables y =1-l, so that

tering data. In particular, mN is nonshrinking;
on the other hand, NN is shrinking while NN

is antishrinking, so that since the asymptot-
ic differential cross sections should be equal
for these two processes, ' one may believe that
they tend to the same constant limit.

(2) General ease. —The analysis is quite sim-
ilar to the previous one, and one gets the same
result, i.e., that the corresponding scattering
amplitude behaves like

T(s, t) =f(t)s (lns) . , t &0, (7)

is replaced by

ln id@/dt I

ln(s/s, ) p

where a is the dominant Regge trajectory.
It is interesting to remark that this gives

a new type of connection between high energy
in one channel and low energy in the crossed
channel, namely that the behavior is given by
the intercept of the exchanged trajectory.

In general, (7) gives also essentially nonshrink-

ing diffraction peaks. Experimentally, how-

ever, shrinking has been observed in Nm charge
exchange. ' In fact, because of the small vari-
ation of lns in the available energy range, one
can still fit the data with formula (7); for in-
stance, the usual fit to determine the p trajec-
tory,

Let us suppose that T(s, t) behaves, for large
s, ass

ln

ldll/dt

i ln ln(s/s~)
ln(s/s, ) p ln(s/s, )

(9)

T(, t) =f(t)s ' (lns) (ln lns) ~; (6)

then, from (5) we obtain at once that ni(t) = 1,
if t &0, QED.

The preceding analysis shows that the width

of the diffraction peak, for elastic scattering,
may at most change as ln lns for sufficiently
large energy. Qf course, this is much slow-
er than the logarithmic behavior one expects
from a naive Regge-pole analysis. In fact,
what happens is that the "effective" trajecto-
ry is flat at negative values of t.

However, for t & 0 the picture is quite differ-
ent since the pole always lies above the branch

points [cf. Eq. (I)]; accordingly, the essential-

ly constant diffraction peak we obtain does not

lead to a Gribov paradox. 7

As far as the experimental situation is con-
cerned, a constant diffraction peak at high en-

ergy seems to be consistent with elastic-scat-

Taking as a typical number s, =1 GeV, one gets
that the coefficient of I8(t) in (9) only varies
from 0.4 to 0.5 in the energy range 5-25 GeV,
so that P(t) simply gives the slope of the "ef-
fective" trajectory. Qf course, what happens
in this case is that one is only at intermediate
energy.

(3) Discussion. —A way out of the situation
just described would be to assume that the Pom-
eranchuk intercept is not exactly 1, but rath-
er that"" np(0) = l-e, e w 0; then the branch
points no longer accumulate at n(0), but rath-
er give an effective twisted trajectory, nef f(t),
that decreases as t separates from 0 along neg-
ative values. In this case, one obtains again
a behavior similar to the Regge-pole type for
the diffraction peak, i.e., in lns. However,
the total cross section will tend to zero at in-
finity like a power 1/s~ of the energy. We re-
fer to the work of Srivastava' for a detailed
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analysis of this situation.
A last remark is that there is always the prob-

ability that the cuts discussed in Ref. 1 do not
really appear in the scattering amplitudes,
since they are obtained by considering partic-
ular terms in a perturbation expansion. How-
ever, according to Mandelstam, ' this is very
unlikely.

We are indebted to Professor ¹ N. Khuri
and Professor A. Martin for illuminating dis-
cussions, and to Professor B. Zumino for his
kind hospitality at the Physics Department of
New York University, where this work was
performed.

Note added in proof. —The result proved in
this article was stated by Gribov. " We thank
Professor A. Martin for bringing this fact to
our attention.
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It is shown how the subtractions, in a dispersive approach to SU(3) and SU(2) breaking,
reproduce the results of the tadpole model, under the assumption of certain widely used
forms for the medium-strong interaction.

We wish to re-evaluate, within the light of
recent theoretical developments, the results
obtained by field-theoretical models of SU(3)
breaking such as the w-y mixing model, ' the

tadpote model, ~ and the "fifth interaction. '"
We mill show their basic similarities and re-

derive many of their results in what we believe
to be a physically sounder fashion; in partic-
ular, the intramultiplet relations and the con-
nection between SU(2) and SU(3) breaking of
the tadpole model will be shown to arise in
a natural manner.
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