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It was found by Edwards, McWilliams, and
Daunt' (EMD) that upon cooling, a solution of
solid 'He and 'He separates into a 'He-rich
phase and a 4He-rich phase. This phenomenon
was identified by a discontinuity in the specif-
ic heat at the phase-separation temperature.
In this article we describe a theoretical anal-
ysis of the phase separation.

The thermodynamic treatment of phase sep-
aration' is based on the excess Gibbs energy
per mole defined as a function of the 'He con-
centration x, temperature T, and pressure
I' as

g (x, T, P)
jV

=g(x, T, P)-xg -(1-x)g + Ts (x), (1)
(o) (o)

where g3"' and g4"' are the Gibbs energies per
mole for pure He and pure He, respectively,
that is, gs"'=g(1, T, P) and g4'=g(0, T, P).
The entropy of mixing per mole is

s = -~[x i~+ (i-x) in(l-x)].
m

A "regular" solution' has

F-
g =x(1-x)o.(P)

with n independent of temperature. Such an
excess function gives rise to a critical temper-
ature

T =o./2R
C

(4)

with a symmetrical phase-separation curve.
In EMD it is shown that a 'He- He mixture ap-
parently forms a regular solution. A simple
analysis, valid for classical static lattice mod-
els, can be given4 to show how such a g+ can
come about. Our model of a solid helium so-
lution will show that it is expected to be near-
ly regular, however, for far different reasons
than the classical model.

We base our calculations on a generalization
of the Nosanow theory' of the pure phases of
solid helium. Thus, for the ground state of
the mixtures we choose a trial wave function
of the form

0=II y3()II y4(j)

x IIf (&1) II f ( m~)IIf (pq). (5)
k&l m&n p, q

The first product is over all 'He atoms in the
lattice with

y3(i) = exp(--,'A (r.-R.)');

that is, we locaJi. ize 'He atoms about their lat-
tice sites with single-particle Gaussians whose
width is determined by A, . The second product
is over all 4He atoms with a relation analogous
to (6) holding. The functions fat, (kl) account
for the short-range correlation effects which
are due to the large zero-point motion of the
atoms and the repulsive core of the potential. '
We choose the Nosanow analytic form for f(r),

f (r) = exp(-Z [(o/~)"-(o/r)']),
ab ab

where o =2.56 A, and where there are three
K parameters: one for 'He-'He correlation
functions, one for that of 4He- He, and one for
the 3He-4He functions. Thus the last three pro-
ducts in (5) are over the three kinds of pairs
in the solid. To reduce the number of varia-
tional parameters we do not minimize the en-
ergy with respect to the E~g's but set E33 equal
to the value of the E parameter of pure He;
similarly for A4„' A'~ is taken as an average
of E33 and E44 . Thus we have on 1y two varia-
tional parameters, A, and A4, for each volume
and x value. We have checked the assumption
concerning the E~y's by minimizing with re-
spect to all five variables in one case with neg-
ligible further lowering of the energy.
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As in the pure-phase theory, the energy is
evaluated by a cluster expansion truncated af-
ter the two-body terms. There is a one-body
energy term, associated with the y(~), given

by

N t =xN 428-/maa a ' a a' (8)

n (R. .)=x n(R. .),
b ij b ij ' (lo)

where n(R,j) is the total number of particles
in a shell at distance Rij. Because of (10), xy
factors out as shown on the left of Eq. (9). Any
effects of lattice distortion are neglected and
will be shown to be small later. The effects
on the energy of an hcp structure in the 4He-
rich phase are certainly small and will be neg-
lected since the hcp and bcc lattices have al-
most the same energy at a given pressure. '

From (8) and (9) we can write the mixture
ground-state energy per mole e(x, P) as

e(x, P)

=xt, +(l-x)t, +-,'x'w„+-,'(1-x)'w„+x(1-x)w„

=xe, (x, P) + (l-x)e, (x, P) +x(1-x)aw(x, P), (11)

where e~(x, P) =tz+ 2w~~ is the energy per mole
of the a atoms, but at the mixture molar vol-
ume. Also

1 1m%:—%~4—
p N33 —A%44 ~ (12)

where N is the total number of particles, and

xa, N@, and mz are the concentration, num-

ber, and mass of the a-type atoms, respective-
ly. Further, the two-body term associated
with the interactions of (a, b) pairs is given by

x x ¹gah ab

=ex Pn (R. .)

ZJ

&[y (i)y~(j)f ~(ij)] V ~(i~)dr dr-.
y [y (i)y~(j)f ~(ij)]'dr dr.

where V~y(ij) = V(tj)-[5'/2m~t, ]v lnf~f, (ij),
V(ij) is the Lennard-Jones potential, m~t, is
the reduced mass of the (a, 5) pair, and nb(R;j)
is the number of b-type particles in a shell
at distance Rz& from a particle taken as origin.
[If a and b particles are identical, a factor of
~ should appear in (9).] We assume that 'He
and 'He particles are randomly distributed
throughout a perfect bcc lattice. Thus there
is no short-range order and

By computation with an effective Debye tern-
perature, or by examination of the specific-
heat data of EMD, we find that the effect of
the excited phonon states on the Gibbs ener-
gy of the mixture is negligible, such terms
being smaller than the other terms by three
orders of magnitude or more. Thus, by using
(1) and (ll) we can write the excess Gibbs en-
ergy as

g (x, P) =xone~+(I x)-Ae~+x(1-x)hw+Pv, (13)

where

ae =e (x, P)-e @'(P),
a a ' a

v =v(x, P)-xv, (P)-(l-x)v, (P)
z (o) (o)

with e~"'(P) and vz"'(P), the pure-phase ground-
state internal energy and volume per mole for
the a system at pressure P. To find the equi-
librium value of v(x, P) we minimize the total
enthalpy of the system as a function of v at
fixed P and x.

In a classical static lattice solid' it is some-
times assumed that v,"'=v4@'=~, so ~e~ =0
and g+ is of the regular solution form (3) with
a =As'. However, we find that such a model
is quite incorrect for helium. Indeed, As' is
very small and negative. The important fea-
ture of solid helium solutions is the large dif-
ference between v,"'(P) and v,@'(P), the form-
er being -24.4 cm'/mole and the latter -20.4
cm'/mole at P =—36 atm, this difference being
caused by zero-point effects. Thus for, say,
small 'He concentrations, v(x, P) = v,+'(P) and

each 'He atom finds itself in a much smaller
volume than it would find in a pure 'He phase.
Hence e,(x, P) &e,"'(P). Similarly, e,(x, I)
&e,+'(P). It is the strong dependence of Ae,
and Ae4 on x, through the changes in volume
with x at constant pressure, which determines

g (since ~w and v nearly vanish). These
results are in agreement with some general
considerations given by Prigogine, Hringen,
and Bellemans. 2

In Fig. 1 we plot the theoretical values of
v(x, P), be„and ae, vs x. We see that v(x, P)
is very nearly linear, but we can express the
small departure from linearity as

Pv = -Ox(1-x)

with cr/P =—0.4 cm3/mole. Further, in a rough
approximation we can fit the energy curves
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FIG. 2. Theoretical phase-separation curve for P
=35.8 atm. Note that the curve is slightly unsymmet-
rical.
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FIG. 1. Upper curve is plot of mixture volume v vs
He concentration x. Curve Ae3 is a plot of the differ-

ence between 3He energy in the mixture and in the pure
state versus x at constant pressure P =35.8 atm. Ae4
is a similar curve for 4He.

by the convenient polynomial forms

(17)

with P, y, p, , v & 0. These forms have not been
used in our numerical calculations, but they
are convenient here for qualitative arguments.
Since v and x are almost linearly related, the
slope of a Ae curve is related to the partial
pressure, ' and the second derivative is relat-
ed to the compressibility. Putting (16)-(18)
and the small quantity

hate = -X, A. &0, (19)

into (13), we get'

jV
g (x, I') =x(l-x)[(P-p-x-o)-(y-v)x]. (2o)

For P= 35.8 atm (the pressure of the EMD ex-
periment) we find (P-p-A-cr) =—2.0 cal/mole
and (y-v) = 0.2 cal/mole. If in the factor in
square brackets in (20) we take x = 2, then we
have an excess function of the form of Eq. (3)
with a critical temperature Tc = 0.47'K by Eq. (4).

The effect of the x dependence within the square
brackets is to make the T-x curve unsymmet-
rical with the maximum shifted below x = —,'.
Our more precise numerical treatment bears
out the above crude calculations as shown in
Fig. 2. Indeed we find that Tc = 0.47'K with
the critical concentration x~ =—0.45. The ex-
perimental curve of EMD is symmetrical with
T =0.38'K. We feel the agreement of the the-
ory with the experimental value of T~ is rea-
sonable since the variational energies of the
pure states with trial functions of the form
we have used are too high. ' It is likely that
any improvement in the basic pure-state wave
function will provide an equivalent or greater
improvement (hence a lowering of Tz) in the
mixture calculation. However, the fact that
the EMD T-x curve is symmetrical is surpris-
ing since the symmetry-destroying term in

(2), (y-v)x, while it may be small, is expect-
ed to be present on the rather general grounds
that the compressibilities of the two components
differ at equal pressures.

We have also computed the T-x curve for
a higher pressure. We find for P=55 atm that
this curve is still unsymmetrical and that T~
is decreased slightly to Tc =—0.45'K. Thus the
phase separation curve is rather pressure in-
dependent. However, the excess volume v+

is smaller by an order of magnitude at this
pressure. This decrease of T~ with increas-
ing pressure has been observed by Zimmerman. '

If experiments were done at truly constant
pressure, we see from the v-x curve of Fig.
1 that upon phase separation, there would be
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g . =-x(i-x)[5 +(5 -5 )x].dist 3 4 3

Assuming (22), the critical temperature is
lowered by this effect by only 0.02'K and the

(22)

a small increase in volume. In a blocked cap-
illary experiment it is actually the volume which
is constant; so there is an increase in pres-
sure upon phase separation. There are at least
two groups'& preparing experiments which
detect the phase separation by noting this pres-
sure change with sensitive strain gauges. We
find that the pressure increase is

AP=0.2 atm

for x = —,', independent of initial pressure.
In order to estimate the effect of lattice dis-

tortion on our calculations, we considered a
single 'He atom embedded in a He bcc lattice.
We fixed the A parameter for all ~He atoms
beyond the second neighbors at the pure-phase
value and minimized the difference between
pure 'He energy and the energy with this sin-
gle impurity, with respect to the 'He A param-
eter, the distances of the first and second neigh-
bors from the 'He, and the A parameters for
the first- and second-neighbor 4He atoms. In
all, then, there were five parameters. A sin-
gle correlation-function parameter, R, was
used for all pairs of particles and fixed at the
value appropriate to pure 4He. Some numer-
ical tricks made this calculation quite simple
and will be described in a future publication.
The result is that the near neighbors of the
'He impurity increase their distance from the
'He by 0.4% of the undistorted nearest-neigh-
bor distance and the energy is lowered by the
lattice distortion by 5, =0.08 cal jmole of 'He

impurities at P —= 36 atm. If we have a small
concentration x of 3He impurities, we expect
the energy to be lowered by -x5, . We can cal-
culate a similar quantity for a'He atom in a
bcc 3He lattice at I' =-36 atm. The 'He impu-
rity neighbors decrease their distance from
the He by -0.7 /q. Here the energy is lowered
by the distortion by (), -=0.24 cal/mole of 'He

impurities. For small 4He concentration, 1-x,
the lowering is -5,(l-x). The simplest guess
at an interpolation formula for the distortion
contribution to g for all concentrations is

lack of symmetry in the phase separation curve
is reinforced.

In summary it seems that solid-helium so-
lutions can be understood on the basis of vol-
ume effects. Future experiments may clari-
fy the question of the symmetry of the phase-
separation curve, and perhaps give further
confirmation to the prediction of a decrease
in T~ with increasing pressure.
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