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Sum rules are derived which give the distribution of states consisting of an A-particle
nucleus times a single-particle form factor among all physical states of the (4 +1)-par-
ticle system. A similar derivation of Butler’s new stripping theory clarifies some of

its physical content.

Direct deuteron-stripping reactions examine
the single-particle character of states of an
(A +1)-particle nucleus relative to the ground
state of an A-particle nucleus.! The projection
of the latter state onto an (A4 +1)-particle bound
state is normally expressed as a product of
a spectroscopic factor times a normalized sin-
gle-particle wave function, often called the
form factor. The sum rules given the distri-
bution of the product of the form factor times
the A-particle ground state among all states
of the (A +1)-particle system. They relate spec-
troscopic factors to overlaps of the form fac-
tor with the elastic-scattering wave functions
of the extra nucleon on the A-particle core.

The sum rules are derived by inserting a
complete set of states in a matrix element.
The new stripping theory of Butler et al.' us-
es a similar technique and we show here that,
as far as the spectroscopic factors are concerned,
the same complete set must be used. The dis-
tribution of “single-particle stripping strength”
thus obtained is very analogous to the distri-
bution of single-particle strength given by the
sum rule, and we can draw conclusions as to
which terms may be neglected.

For simplicity we restrict the discussion
to the case of a spin-zero A-particle nucleus
and we neglect antisymmetrization. A detailed
treatment will be given elsewhere but the im-
portant consequences of antisymmetrization
are stated finally.

Bound states of the (A +1)-particle system
are denoted by ¥, (A +1;J,My). The projection
of the A-particle ground state x,(4;J,=M,=0)
is defined by
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where S, is the spectroscopic factor and the
form factor ¢, is a normalized function of T,
the relative distance of particle A +1 from the
center of mass of the first A particles. The
orbital angular momentum [ is restricted to
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one value by parity, and we shall drop explic-
it reference to the quantum numbers jlm.
We consider the overlap function

<x0¢n'¢ nx0> =1. (2)

The sum rules are obtained by inserting the
unit operator of the (A +1)-particle Hamilton-
ian into the matrix element:
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The ¥y ‘“(E) are scattering states in which par-

ticle A+1 is incident with relative momentum

K, on the bound state x, of the A-particle sys-

tem. Rearrangement channels and channels

with three or more incident particles needed

to specify a complete set are denoted by ¥, ‘"
For the scattering state with A =0, we define

(X ¥ PE) = P&, T, 8). (4)

This wave function gives the exact elastic-scat-
tering amplitude for the nucleon on the A-par-
ticle nucleus. As long as the elastic channel
is open, it can be shown from unitarity and
time-reversal invariance that the contributions
of all other channels at a given energy are re-
lated to that of the elastic channel by functions
of the S-matrix elements.?

Thus, after using the definitions (1) and (4),
we obtain for the sum rules

2
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where f is a function of the jl-partial wave S-
matrix at the energy given by k.

These sum rules are model independent and
give a definition of the energy distribution of
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single-particle strengths among all states of
the (A +1)-particle system. They also allow
the possibility of a direct calculation of spec-
troscopic factors from a knowledge of form
factors and elastic-scattering wave functions,
quantities needed for the usual distorted-wave
Born-approximation analyses of stripping ex-
periments. Results of such calculations will
be reported elsewhere.

The basic idea of the new stripping theory
of Butler et al.’ is to relate stripping matrix

U (—)*k
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The complete wave function for the system
with incident deuteron plane wave is ¥; ™ and
\Ilp‘ )(kp) is some single-particle wave func-
tion for the proton. The insertion of a complete
set of proton wave functions ¥ (Ep’, f449)
is not essential to the development of the new
theory and will not be considered further here.
Projections onto states other than the ground
state x, of the target in Eq. (6) are taken to
give small compound-nucleus contributions
to the total matrix element.?

In analogy to Eq. (2), we can write Eq. (6)
as

2 _
M /S V2 =(x,®, 104X (7)
As before we insert the unit operator (3) and
identify the various terms. Bound-state con-
tributions are given in terms of matrix elements
M =S g lp ).
=5 (¢ L»
It is important to notice that, for g#n, M q
is not the physical direct-reaction matrix ele-
ment to the final state ¢ because the fixed pro-
ton momentum, kp, in ‘I/d(+’ and ¢, takes phys-
ical values for the state # only.
The continuum contribution from A =0 is de-
termined from Eq. (4):

M = [@Kg lo P@R)Xe PR ).

In addition there are continuum contributions
from A# 0 and o which we collectively denote

by M .*. Then the relation between M, and M,
becomes
M M

5 1/2[1 S] qu<¢ lp >S l,2+M +M r. (8)
n q#n

elements going to final bound and continuum
neutron states, using their common single-
particle strength as defined here. To show
this we assume final uncoupled motion of the
proton, as in Ref. 1, and define the direct d-
p stripping matrix element to a final state,
n, as

— )\ _ 1/2
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where
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I In the original derivation of the theory,' the

bound-state terms g ## and the residual con-
tinuum terms M’ were implicitly neglected.
Terms corresponding to M.’ can certainly not
be neglected in the sum rule (5). On the oth-
er hand it could be argued that M.’ is small
because of random phases, but this point needs
further examination.

However, we can definitely assert that the
bound-state terms cannot be neglected. To
obtain them, relations similar to Eq. (8) can
be derived starting from M q instead of M,,.

The set of linear equations for M, and Mg can
then be formally solved. Without doing this
explicitly, we consider the approximation ¢,

~ Qg This should not be far out in many phys-
ical situations. After the neglect of M./, the
solution of the set of equations is

S /2

anl-zqu

©)

We have thus restored the rough proportion-
ality to S, of the direct cross sections to a set
of final bound states % characterized by the
same jI values. Also Eq. (9) has the satisfac-
tory feature that both M, and 1-} Sq vanish
simultaneously when all the single-particle
strength is in the bound states.

For reasons of simplicity, antisymmetriza-
tion has not been included here. However, it is
clear on both physical and mathematical grounds
that its inclusion is essential whenever com-
plete sets of states are being considered. Math-
ematically the reason is that the unit operator
(3) must be given in terms of the antisymmet-
rical eigenfunctions of an identical-particle
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Hamiltonian. Then Eqgs. (2) and (7) must also
be antisymmetrized. Physically we have neg-
lected the possibility that there is single-par-
ticle strength in y, or, in other words, that
the single-particle state, ¢,, is partly occu-
pied. The consequences to the sum rule (5)
and the relation (9) are what might be expect-
ed. The sum rule must give 1-A instead of
unity, where A is an exchange integral giving
the single-particle strength already contained
in x,. With a reasonable approximation, simi-
lar to that used for the other bound states, the
denominator in Eq. (9) should be replaced by
I—Z)Sq—A.

To conclude, we can say that the insertion
of a complete set of states has led to the use-
ful sum rules (5). The new stripping theory
can be understood as relating the “single-par-

ticle stripping strengths” of a bound state and
the continuum.
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’The functions can be obtained by writing the sum
rule in terms of the ¥ <, using the standard relation-
ships between the ¥ ™ and ¥ P, and finally inverting a
matrix.
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In a series of measurements using a balloon-
borne scintillation counter we have found a sig-
nificant change in the high-energy (>23 keV)
x-ray flux from Cygnus XR-1. On 16 and 25
May 1967 we flew the same detector with which
we had measured the spectrum of Cygnus XR-1
from 23 to 97 keV on 19 September 1966. These
two May observations were in agreement with
each other and were about twice the magnitude
of the result reported earlier by us.!

There have been earlier reports of a decrease
by a factor 3-6 in the 1- to 10-keV x-ray flux
from Cygnus XR-127* relative to the early (self-
consistent but unconfirmed) June 1964 measure-
ment by Bowyer et al.’

In Ref. 1 we compared our September 1966
data with McCracken’s® April 1965 data and
found the flux he measured to be 1.5 times what
we measured and to be greater than ours with
at least 97% confidence. Among the reasons
why such differences are not usually considered
to be significant are the following: (a) Calcu-
lations, rather than measurements, of detec-
tors’ absolute sensitivity are usually used;

(b) pressure altitudes are often not measured
precisely and atmospheric absorption correc-
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tions are therefore subject to error; (c) mal-
functions occur during flight, often with uncer-
tain effects on the results; (d) experimenters
do not agree on the correct way to analyze da-
ta.

The present comparison of our May 1967 and
September 1966 results is not affected by the
first problem or the last. In addition, while
our September 1966 results contained a pos-
sible 15% uncertainty due to discrepancies in
pressure measurements, the 16 May experi-
ment included an in-flight comparison of a care-
fully calibrated pressure sensor with a Win-
zen barocoder like that relied on in September
and consistently showed a negligible difference
of 0.05 mbars.

During our May 1967 flights several malfunc-
tions did occur; however, we believe that they
produced no unknown effects on our results.
These were the following: (a) complete loss
of data for one energy band due to failures in
the data recording system but not in the detec-
tor or amplifiers, (b) corona discharge dur-
ing a well-defined part (excluded here) of the
16 May flight (stable background levels with
normal statistical fluctuations before and af-



