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MAGNE TOSONIC WAVES IN BISMUTH

W. I. Lupatkin* and C. A. Nanney
Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey

(Received 11 December 1967)

We report the observation of magnetosonic waves in bismuth at microwave frequen-
cies. The waves are characterized at low magnetic fields by a phase velocity near the
Fermi velocities.

Several writers' ' have predicted the exis-
tence of magnetosonic (sometimes called mag-
netoacoustic) waves in semimetals. These
waves arise from the fast Alfven wave which
is a cornpressional wave when propagating per-
pendicular to the external magnetic field. If
the magnetic field is reduced so that the mag-
netic "pressure" becomes less than the ther-
mal pressure of the carriers, the result is
a nonlocal acoustic-like wave propagating at
a velocity near the thermal speeds of the car-
riers. These waves have not previously been
observed in solids although Alfven waves in
bismuth have been reported by a number of
workers. ' ' In this paper we report the first
observation of magnetosonic waves as mani-
fested by the alteration of the Alfven-wave dis-
persion relation at low magnetic fields where
the wave velocity becomes comparabl to the
Fermi velocities of the electrons and holes.

The experiments were done using a conven-
tional X-band microwave spectrometer in which
the klystron was locked onto the cavity absorp-
tion maximum. The magnetic field of a super-
conducting solenoid was amplitude modulated
by means of a small copper solenoid wound

around the microwave cavity. The amplitude-
modulated reflected microwave signal was crys-
tal detected at one arm of a "magic tee" bridge
and fed directly into a phase-sensitive, lock-
in detector.

The sample (approx 1&&8x 8 mm ) was pla. ced
on the narrow wall of the TE$03 rectangular
microwave cavity in the center of the cavity's
long dimension so that the rf magnetic field
was maximum along the surface of the sample.
Propagation in this configuration is perpendic-
ular to the magnetic field. This fact is impor-
tant since for k &B the fast magnetosonic wave
velocity differs from the Alfven velocity because
of nonlocal effects. For k II B the fast magne-
tosonic velocity is the Alfven velocity, and
the slow magnetosonic wave (essentially the
acoustic plasma oscillation) is strongly Lan-
dau damped. & Analysis of the field dependence

of the wave vector yields the dispersion rela-
tion of the waves.

The dispersion relations for the two Alfven
modes (ordinary and extraordinary) propagat-
ing at an angle 0 to the magnetic field are
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assuming spherical Fermi surfaces for both
sets of carriers. However, the form of the
dispersion relation is expected to be the same
even for the anisotropic Fermi surfaces of
bismuth.

where the sum is taken over all types of par-
ticles, and &up a.nd ~c are the plasma and cy-
clotron frequencies, respectively. In writing
the simple dispersion relation of Eqs. (1) and

(2), it is assumed that vA»vre, v Fl„
and g&p'/~c'» ef ~T» 1, where vFe and vFl,
are the electron and hole Fermi speeds, e~ is
the lattice dielectric constant, and T is the col-
lision time. [Since the present configuration
is one in which the propagation vector k is per-
pendicular to B, we are concerned only with
the ordinary mode above, namely Eq. (1).]

However, if the magnetic field is lowered
until the Alfven-wave velocity becomes com-
parable with the Fermi speeds of the carriers,
the compressional nature of the wave becomes
important in determining the dispersion. In
this case the wave velocity no longer follows
the Alfven dispersion law, but approaches a
constant speed related to the particle thermal
speeds, which in gas plasma is the ion acous-
tic speed.

Yokota' has solved the problem for Alfven
waves propagating in the nonlocal limit in a
degenerate gas. The result he obtained is
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FIG. 1. A plot of the number of wavelengths n in the
sample versus reciprocal magnetic induction, 1/B
The sample is 1.025 mm thick and the microwave fre-
quency is 10.80 GHz. The presence of several differ-
ent points arises from the different curves taken on dif-
ferent days.

Figure 1 shows a plot of an experimentally
determined dispersion relation obtained for
a sample of bismuth (k IIbinary, B Ilbisectrix)
at 10.80 6Hz. The vertical axis shows the
number of wave lengths n in the sample as
a function of the reciprocal of the magnetic
induction, 1/B. The reciprocal-field depen-
dence is linear as expected, in the interme-
diate-field range (from approximately 0.25 to
1.0 Wb/m'), where vA»vF and local condi-
tions prevail. In the high-field region, the
points tend to scatter somewhat (because of
quantum effects as reported previously') and
rise above the linear portion. This rise is
due to the large lattice dielectric constant of
bismuth, which is indicated by the curved sec-
tion at very high fields. The linear portion
gives the Alfven speed in the intermediate-field
range as

v = 6.24 &&10sB (m/sec),

where B is in Wb/m . This is in good agree-
ment with previously reported values.

It is quite clear that in the low-field region
(B &0.2 Wb/m ) the experimental points devi-
ate progressively from the straight line fit.
This deviation is due to the onset of nonlocal
behavior of the magnetosonic waves. Using
Eq. (3), it is possible to compare the deviation
in wave length from that expected for a pure
Alfven wave.

If we define &n as nA-nobs, where nobs is
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the observed number of wave lengths at a mag-
netic field 8 and nA is the number expected
on the basis of a pure Alfvdn-wave dispersion,
i.e. , nA= fl/vA, where l is the sample thick-
ness and f the frequency of the microwave,
it is then easily shown by use of Eq. (3) that,
for vA )& 5vpevppg~

where

An =—KB

K= flv v „/5y'

(4)

(5)

and y=v Jt/B.
Figure 2 shows a log-log plot of ~n, deter-

mined from Fig. 1, as a function of 1/B. A
straight line has been drawn through the points
with a slope of 3 as predicted by Eq. (4). The
fit is quite good except where ~n is small and
experimental error is appreciable.

The value of K in Eq. (5) may be determined
from Fig. 2, and we find

(v v )"'=3.8&&10' m/sec.
Fe Fh

Since the exact theory of magnetosonic waves
has not been worked out for the Fermi surfac-
es of bismuth, we are consequently limited
to a semiquantitative comparison of velocities.
In the binary direction the Fermi velocities
of the carriers in bismuth are calculated' to

FIG. 2. The deviation An from a straight-line fit in
Fig. 1 as a function of reciprocal magnetic induction in
the low-field region. The slope of the curve has been
arbitrarily taken as 3.
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be

v (0.83) = 9.5&&10' m/sec,Fe

v (1.67) = 6.7&&10' m/sec,

(2.5) =2.6X10' m/sec,Fh (7)

cy is expected to cause errors of less than ten
percent in the determination of ~n over the
region covered by Fig. 2.

The authors are grateful to Mr. J. P. Garno
for his expert technical aid during the course
of the experiment.

where the number in parentheses is the num-
ber of electrons (&&10"/cm') in ellipsoids char-
acterized by the listed velocity in the specified
direction. It is seen that the velocity determined
experimentally [Eq. (6)] is intermediate between
the extremes given in Eqs. (7). In fact, the
result of Eq. (6) is within 15% of the weighted
average of the roots of the products (v Fev Fg)
of Eqs. (7). A more quantitative comparison
awaits a detailed calculation of the effect for
bismuth, similar perhaps to that of Walpole
and McWhorter" in their studies of nonlocal
helicon propagation.

The assumption ~~ » + warrants a brief dis-
cussion, since the nonlocal magnetosonic waves
are observed at low fields where this condition
may no longer be valid. First, it is noted that
the effect of finite frequency, if present, is
to cause the curve of n vs I/B (Fig. 1) to bend
in the opposite direction to that observed in
the low-field region. Second, from the known

cyclotron resonance masses" the finite frequen-
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ISOMER SHIFTS AND THE SELF-CONSISTENT CRANKING MODEL~
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It has recently become possible to estimate
the difference in the rms charge radius between
the ground and first excited state of a rotation-
al nucleus. The necessary data can be obtained
from Mossbauer measurements of the chemi-
cal shift' and, independently, from the shift
in muonie atoms, ' of the nuclear gamma-ray
energy. It is naturally of interest to compare
such results with predictions of nuclear models.

The purpose of this note is to present calcu-
lations of charge radii of rotating nuclei based
on the self-consistent cranking model. s&~ (Here-
after, Ref. 4 is referred to as II.) This mod-
el depicts collective rotation, in the context
of the Hartree-Fock-Bogoliubov theory, as
the rotation of a deformed average field addi-

tionally stretched by the Coriolis force, which,
at the same time, diminishes the Cooper pair
correlations. The Coriolis-perturbed varia-
tional wave function or the corresponding sin-
gle-particle density matrix determines the
expectation value of any observable as a func-
tion of the angular velocity or angular momen-
tum of the ground-state band. The parameters
of the calculation are those of Case II given
in II. The notation in the ensuing equations
is also defined in II.

The radial proton operator R' is defined by

R'= Q (klan'tl)a ~a,
kl k I'

(protons)
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