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We report here an analysis of unstable modes
which take place in multipole configurations
and are localized along the magnetic field lines.
These types of configuration are characterized
by having magnetic field curvature and strength
varying periodically in such a way that they
are, on the average, stable against ordinary
interchange modes. But there remains the pos-
sibility that new types of modes, localized in
regions where the magnetic field profile is un-
favorable to forms of instabilities which are
not described by the ordinary fluid approxima-
tion, may arise. ' Here we consider modes
driven by a transverse density gradient and

the longitudinal electron temperature, finding
that they are likely to arise around the points
of maximum of the (unfavorable) magnetic cur-
vature or of minimum magnetic field (i.e, max-
imum ion polarization and finite Larmor-ra-
dius drift). We restrict ourselves to treating
configurations with closed lines of force, al-
though the localized feature of the modes we
describe makes possible their existence in more
complex configurations. ' In particular, we
use a guiding-center approximation which,
for the present case, gives a correct treatment
of a realistic configuration and at the same
time provides a better understanding of the
physical ingredients for the instabilities we
present.

We consider a low-pressure situation (P «I)
and look for electrostatic modes the growth

rate of which depends on electron-wave reso-
nance effects. So with cp as the electrostatic
potential (E = —Vp), and in the linearized ap-
proximation, we look for normal-mode solu-
tions of the form p =p, ()(, P) exp(iat+ime).
In fact we treat a toroidal configuration and
adopt the coordinates 8, the angle around the
torus; y, the magnetic potential such that B
=V)(; and g, such that 2m( is the flux of the
(poloidal) field contained within a magnetic sur-
face. ' We also assume a Maxwellian isother-
mal equilibrium represented to lowest order
by the distribution function f&

= exp( —E/T )p (g).
In particular we choose to consider modes whose
effective phase velocity along the lines of force
is larger than the ion thermal velocity and srnall-
er than the electron thermal velocity, so that
Uthi&&+pl/ ~B Vpl I &Uthe. This will imply
that ~ &~be, ~be being the average bouncing
frequency for trapped electrons. Under these
conditions we know' that the imaginary part
of the frequency is small in comparison with
the real part and that the stability properties
and the topology of the relevant modes are de-
termined, to lowest order, by the real part
of the frequency.

Because of all this we can adopt for both the
electrons and the ions proper fluid approxima-
tions, the results of which we have checked
also by direct integration of the Vlasov equa-
tion along particle orbits. Considering the ions
at first, we have

i&un +V (n u)+V (n u )+V tn u (B/B)]=0
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for mass conservation in the linear approxima-
tion. Here the subscript 1 indicates perturbed
quantities, nG the guiding-center density, and
u the total drift. Then we recall that u=u&, 5g,
the magnetic curvature drift,

u = (1++a.'V ')Ex Bc/B'+ (c/Q. B)dE/dt,
2 2

where —,a,'=T;/M;0, 0; is the ion gyrofrequen-
cy, and ulII is given to lowest order by the equa-
tion of motion

where

the latter term indicates average over the elec-
tron orbit, and dl =dll/B.

The dispersion relation is obtained from the
condition n; =ne and is

i&unM. u = —V (n T.+en@ ), (2)

where V
ll

=VX(&/Sg) = (8/Sl). In deriving Eq. (2)
we have anticipated that the modes we consid-
er have frequency &u=m(cTe/ep)(dp/dg) = —m~de,
~de being the electron diamagnetic frequency,
and assumed that (1/B)(dB/d() «(1/p)(dp/dg),
so that &ude»&u&i —= (2cTi/eB)dB/dg, the curva-
ture drift frequency. Finally we limit attention
to modes localized around g =(0 and such that
IVq ql I «impel/R. Consequently, we treat all
quantities as constant in ( to lowest order and
V&'= —m'/R', R being the torus major radius.
In addition, we have to lowest order nG = n,
the ion density, and ng = [1—(ai'/4)m'/R']nlG.
We can then obtain from Eq. (1)

en ~. m
d2

n . = ——1-1 1+m — —
I 1+—(u .(y)

l1, T. ( (d / (d gz
2

&dT ./T -m(U

V 1(X)=P, (5
dl

where b(li) -=(m /RO;)'T; /M, «1. Now the con-
dition that all terms inside brackets in Eq. (5)
be of the same order leads to having + =m~d2
x(Te/T~)+5+, where 5+/&e«1. The same equa-
tion having periodic coefficients can be solved
by standard methods. The most interesting
solutions, however, are found to be localized
in the region where b()i)+Tie&g()()/~dzTe is max-
imum. This region, depending on the values
of m, can be centered around either the point
of minimum B or the point of maximum unfa-
vorable curvature. There Eq. (5) reduces to
the form

d2

--65m
M ~2~ & d)2

2 de

Under the assumption that we have specified
before, we ean simply write for the electrons

V (n T -encp ) =P,
le e

so that

n =(en/T )(ple e (4)

n =[y -(1+m~ /a))(q )]en/T,le 1 de 1 e'

This result is correct to lowest order if y,
is odd in / or if y, is sufficiently localized
so that the perturbation can be thought of as
having an effective k

ll
such that ~/k

ll
& vthe,

the electron thermal velocity. We can see this
more rigorously recalling that, since ~ &~be,
the correction term2 to Eq. (4) is such that

12 ( T. (u . 'lI
2Z'( ' T

e dl

where 55~ = 5&v/(m&ude)(1+ Te/T;) b(lp)-T;&u-g, (lp)/
Teed, , and [bP+ (T;/Te)(&u&, P/cud;)]/Z'= (d'/-
dl')[b+ (T;/Te)(~«/ed;)]Il = l . The eigensolu-
tions of Eq. (6) are cpln ——Hn(l/a) exp(-P/2b, '),
Hn being Hermite polynomials and ~ represent-
ing the localization length for these modes.
So we obtain

( T dlnB)
e
. 'dl p)

2

'= -(B/P)dP/dg. Now, for the valid-
ity of the present result, we require 6' &Z'
so that we can give as a stability condition for
this localized mode

T. T. d InB)
1+

b T b T dlnP/0 e 0 e
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If we interpret 2 as a measure of the "connec-
tion length, " i.e., of the distance between good
and bad curvature, then we see that unless Tt/
Te is fairly large, the stability criterion Eq. (t)
can be quite severe to satisfy.

Then if we consider modes that are not local-
ized but extend over the entire length I.t of the
lines of force, we can assume k ~~= a/Lt and
impose, for stability, that I~I&m&ude, so that
we obtain from Eq. (5) 5&v=5-0 ~~'T;/(M;m'~de')
&0. This corresponds to making the effects
of longitudinal ion inertia prevail over the in-
ertia across the field, ' and we obtain the crite-
rion

r T.w ( T din. B
I. .— -'

~ I+ —
'

t 5 T ( bT dlnP)
e e

similar to Eq. (7). We note also that if &u &~b;
then ion Landau damping will lead to stabiliza-
tion of all such electron drift modes. This gives,
for stability,

L, &r(T /T )(2/b)."'~
t i e

Now we can argue that the localized modes
discussed earlier can exist, because of these
features, also in configurations with open lines
of force and magnetic shear. In particular,
we expect that shear should not be able to elim-
inate the modes until they do not "see" it, i.e.,
until the shearing distance L~ becomes of the
order of 6 or smaller.

Recent experiments on the Princeton linear
quadrupole LM-1 have led to the observation
of a high-frequency oscillation localized in the
region of unfavorable curvature. 4 This appears
to be due to an instability of drift type similar
to the one discussed here. However, the ex-
perimental value of b is rather large in com-
parison with (T;/Te)d lnB/d 1np. In fact, as
reported, ~ 5 ranges between 0 and &, whereas
(T~/Te)d lnB/d Inj = 0.01.

Thus, if we take the localization condition
as predicted by the asymptotic theory present-
ed here, in which b «1, we should expect to
see modes localized in the good-curvature sec-
tion of the lines of force. For this reason an
approximate equation, valid for large b, has
been investigated numerically' with the inten-
tion of finding solutions localized in the unfa-

vorable-curvature section. However, the va-
lidity of the approximation used to drive the
large-b solution needs further analysis before
presenting a definite result.

Finally, we may also argue that, because
of the small growth rate of the modes under
consideration, we expect a small diffusion co-
efficient for radial particle transport. There-
fore, they could be reasonably tolerated even
in the case where, for a given thermonuclear
device, the geometric features of the magnet-
ic configuration (connection lengths, curvatures,
etc.) or the ion and electron temperatures may
not be adequate to achieve complete stability.

For the sake of illustration, we recall that
typically in octopole devices Lt/~= 10, where-
as in quadrupole devices Lt/r=25. Here we
define ~ as the minimum distance between the
stagnation surface ((s) and the critical surface
(gc), where

d "dl—&&—=0
chal B

This distance is reasonably close to the scale
distance for the plasma density gradient con-
sidered previously.

In a typical experiment on the mentioned LM-1
quadrupole device, T;/Te ranges from O. l to
1, and in the octopole experiments of the Uni-
versity of wisconsin and of General Atomic, '
T;/Te is typically 10. The ratio d lnB/d lnP,
measured at the maximum field at (s, is & jn
LM-1 and about &5 in octopoles.
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