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ordinary differential-equation systems. 4

N. Bogoliubov and Y. A. Mitropolskii, Asymptotic
Methods in the Theory of Nonlinear Oscillations (Gor-
don and Breach Publishers, Inc. , New York, 1961),
Chap. 3, Sec. 17.

A large number of theoretical and experimental stud-
ies have been reported in this field: E. A. Jackson,
Phys. Fluids 8, 786 (1960); I. B. Bernstein and R. M.
Kulsrud, Phys. Fluids 3, 937 (1960); I. Alexeff and
R. V. Neidigh, Phys. Rev. 129, 516 (1963). The oscil-
lations in our experiment were identified with the ion-
acoustic waves in the following ways. When the oscil-
lation existed, the frequency of the oscillation as de-
tected at grid 6 decreased with the increase of the dis-
tance L between 8& and G. The frequency f~ should be,
and was observed to be, proportional to L ~. It was
also confirmed with the use of a photomultiplier that
the ion-acoustic wave was in fact a half-wavelength
standing wave between E2 and G. The phase velocity
Ve obtained from the relation between f~ and the wave-
length 2(L-2L&), where Lz is a sheath thickness 0.1
cm, agrees very well with that calculated from probe

measurements; for example, f~=60 kHz, L 2—Le =0.8
cm, then Vs =0.96&& 105 cm/sec, and the electron tem-
perature Te =2.0 eV. However, there remains the
question whether this ion-acoustic wave is the direct
result of a two-stream instability or other mechanism,
such as the decay-type instability which was given by
V. N. Oraevskii and R. Z. Sagdeev, Zh. Techn. Fiz. 32,
1291 (1962) [translation: Soviet Phys. —Tech. Phys. 7,
955 (1963)], and Y. Ichikawa, Phys. Fluids 9, 1454
(1966), t .

3A similar result has been obtained by E. A. Korni-
lov et al. , Zh. Eksperim. i Teor. Fiz.—Pis'ma Redakt.
3, 354 (1966) [translation: JETP Letters 3, 229
(1966)], who applied microwave signals to an electron
beam of about 3 kV for modulation and observed the
quenching of the oscillations excited by the beam, but
they did not classify the oscillations. The stabiliza-
tion of a two-stream instability by virtue of the exis-
tence of an electric field has been treated theoretical-
ly by Yu. M. Aliev and V. P. Silin, Zh. Eksperim. i
Teor. Fiz. 48, 901 (1965) [translation: Soviet Phys.
—JETP 21, 601 (1965)]. The assumption and the result
of this theory are much different from our experiment.

Bogoliubov and Mitropolskii, Ref. 1, Sec. 13.
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In the weak-coupling limit, it has been shown'
that a system of fermions with purely repulsive
forces will be superfluid at zero temperature.
This is because the two-particle interaction
induced by many-body effects is attractive at
the Fermi surface provided that the angular
momentum of the pair is sufficiently high. These
asymptotic considerations do not permit the
specification of the actual momentum of the
pairing in the condensed state, much less an
accurate estimate of the transition temperature
T~ or the magnitude of the energy gap ~.

We present results here concerning the ex-
act low-density behavior of the pairing inter-
action U for fermions with arbitrarily strong
short-range forces. Only the T =0 and 4 =0
limit of U will be considered. It is found that
at low densities a pairing interaction can in
fact be defined in the BCS manner such that
both Tc and 6 are proportional to exp[2/wm*
&&kF 'U(kF, kF)]. At low densities, the cor-
rection 5U induced by many-body effects turns
out to be attractive in P states, less strong-
ly attractive in D states, and repulsive in S

6I(p, k) = (4m/m) to Q(p+k),

6U =(2/m)(k T ) Q (0)(-l),2—
(2)

where U=mkF 'U, Q is one-half the usual

states. A system of hard spheres at low den-
sities and at T =0 should be superfluid in a
condensed state with P- state pairing.

Quantitatively we obtain the following results
in the limit of low densities. In spite of the
strength of the prima, ry interaction v, at low
densities 5U tends to the expectation value of
the induced potential ~I on the Fermi surface
and on the energy shell. ~I is shown in Fig. 1.
The blocks T at low densities may be replaced
by combinations of ladder diagrams for par-
ticle-particle scattering and y may be replaced
by a single particle-hole loop. In the low-den-
sity limit with p and k near kF, 6I(p, k) turns
out to be precisely the same as the lowest-or-
der perturbation value except that, in the final
result, v- (4w/m)to, whereT, is the zero-en-
ergy scattering amplitude (To =R for hard spheres). .

One obtains in this limit
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FIG. 1. Diagrammatic representation of induced
force Q(p, k), containing all corrections to the irre-
ducible interaction function for particles with equal
and opposite initial momentum P and spin &. The
blocks T represent irreducible particle-hole kernels,
while g is the complete generalized response function.
At low densities y reduces to a single particle-hole
loop.

polarization bubble, and Q(0) = (2wmkF) 'Q(q,
0) with q=p —k, and is normalized to unity at
q =q, /q =0. We note that Q(0) can be found in
position space by contour integration and is,
in terms of spherical Bessel functions,

Q (r) = const jl (2k r)/(k r')

This is of order (kFl0) . The approxima-2l+1

tion to BCS can be shown to be valid to lead-
ing order, for each l. Thus for all l&0, 5U

dominates over the BCS term at sufficiently
low densities. Systems with repulsive free-
space S-wave scattering at momenta correspond-
ing to these low densities are necessarily in
superfluid states with P-state pairing.

Curiously, an inversion of a "classical" mod-
el' gives the correct sign for the induced force
at low densities, attractive for l &0. An inter-
action of the type of Fig. 1(a) between, say,
hard spheres A and B is classically a three-
body interaction, the third body C being the
sphere knocked out of the Fermi sea in the
intermediate Feynman loop. The third sphere

For l =0, 1, and 2, Ql( —1) has the following
values: l = 0, 3 (2 ln2 + 1)=+0.80; l = 1, —,

' [—2 ]n2
+ 1]= —0.08; and l = 2, (2/1 05)[-8 + 11 In2) = —0.008.
For asymptotically large l, ' and therefore pre-
sumably for all l &0, Ql(-1) is negative and
monotonically decreasing in absolute value.

Equation (2) is to be compared with the BCS
estimate' in terms of a free-space phase shift
for relative momentum equal to kF,

U =——tan6 .

is effective when it sits between A and B, there
serv::ng to deflect B from A, simulating a di-
rect repulsive force. Quantum mechanically,
however, internal exchange forces at the T's
cancel out the process of Fig. 1(a) entirely
at low densities, leaving only Fig. 1(b). In
this exchange process B changes identity with
C and as a result B is deflected toward A. as
if by a direct attractive force. For the special
case l =0, we can say that B comes between
A and C, reversing the final deviation.

This argument appears to depend, as it should
not, on the primary force between A and B
being repulsive. In reality, it depends on a
repulsive exchange force between the exchanged
particles B and C only, in states of parallel
spin. It depends also on the fact that the range

kF ' of the exchange force is considerably
larger than that of the primary force at low

densities.
Consider now the exact situation. For strong

interactions, the pairing interaction is deter-
mined in BCS by the equation

U(k, k') =(k Iv' Ig(k')), (5)

where ( satisfies an integral equation of Schro-
dinger wave-matrix form, though with modi-
fied Green's function G. In BCS, v' is the bare
interaction v. In the exact case one can show
the following. At low densities there exist Her-
mitian and energy-independent U and v' satis-
fying (5) with & and T~ connected exponential-
ly to U as in strong-interaction BCS. G is
further modified by the expected quasiparticle
(q-p) corrections for energy-spectrum, renor-
malization and lifetime effects. ' v' has the
for m

v' = v+ Re5I+M +M (6)

The expression for M is not unique. At low
densities only one has M(p, k) = const le(k) IPJ dko

x(k, —e') 'Im6I(p, k) with po=a(p). Here e

is the q-p energy relative to the Fermi ener-
gy. In (6) a three-dimensional momentum rep-
resentation is understood with matrix elements
between states, say P and k. For ReDI we must
take p, = e(p); k, = e(k). More specialized results
for a density expansion of 5U are as follows.
In terms of the parameter x =k0TF, q-p correc-
tions enter first at order x lnx for l =0 and
x' Inx for l &0.' The nonstatic part of Re~I and
the term M in (6) enter at order x +8. An ap-
proximate estimate of the x term for l &0 has
been made. Like the coefficient of the lowest
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order x' term (2), that of the x' term is inde-
pendent of the shape or range of v. Higher-or-
der terms are in general shape dependent.

We very briefly sketch the derivation of the
more general results above. ' From work on
strong-interaction BCS, it is sufficient to prove
that one can write the exact gap equation in
BCS form with s' replacing e and with the ap-
propriate q-p replacement of lel. Consider
the exact integral equation for the gap function

y(P, P, ) with kernel I(P, k), to lowest order in
the gap b —= y(pF, O). Take IP, I(h. Then the
integrand will have two branch cuts along the
real axis of the complex k, plane running from
lk, l =A to ~. Deform the Feynman contour of
integration over k, to a hairpin loop about the
right-hand cut. This yields two contributions.
The first is due to the discontinuity, across
the cut, of the product G(k)G(-k) of single-par-
ticle propagators entering into the gap equa-
tion. In a q-p approximation this reduces to
a pole term which is of BCS form for y[k, e(k)].
The discontinuity of Iy yields a second term
which gives rise in lowest order to the M term
given below (6), upon making use of the origi-
nal equation to evaluate the discontinuity.

The derivation indicates that the general re-
sults (5) and (6) and the connection of Tc and
b, to U are valid up to and including the order
of first appearance of q-p corrections to G

and of the term M in (6). A formal extension
of this proof leads to the stronger conclusion
that the general results, except for the specif-
ic form of M, are probably true at all densi-
ties provided only that one works within the
framework of a q-p approximation to the ener-
gy-va. riable discontinuity of the product G(k)G( —k)
entering into the exact gap equation.

Physical examples of neutral quantum fer-
mion systems in the low-density region are
few. Our results are not directly applicable
tp dilute He and He mixtures. ' They are ap-
plicable to the neutron gas, a rough model of
the hypothesized neutron star. The neutron
gas at low densities is expected in BCS theory
to be in a condensed state with S-state pairing. '
The induced effect discussed here reduces the
8-state gap and favors a transition to a condensed
state with P- or D-state pairing at a density
presumably in the neighborhood of nuclear core
densities, since the 8-state phase shift goes
to zero in this region.

In the region of intermediate densities, we
underline the importance of strong-interaction

effects, effects leading to the deviation of 6U

from 6I(kF, kF). These appear as early as the
order x4 in the density expansion of 6U. In al-
most. all practical cases, one cannot avoid the
somewhat cumbersome machinery of solving
the integral equation for U. One can, howev-
er, over a wide range of densities (at least
for l )0) employ a. linearized approximation
for the solution with the BCS results as low-
est order. '

It is interesting that the low-density mech-
anism for the induced force is similar to that
in the nearly ferromagnetic region, typified
presumably by liquid He~." In the latter case,
as in Fig. 1(b), terms contributing to 6I are
characterized by having spin unity rather than
spin zero in the particle-hole cross channel;
though in the nearly ferromagnetic case, small-
er noncancelling contributions in this spin chan-
nel also arise from Fig. 1(a).' This reveals
the existence of an intimate connection between
a superfluid tendency in higher l states and
a ferromagnetic tendency for the system, both
at very low and at comparatively high densities.

One of us (A. L) would like to acknowledge
the hospitality of J. Weneser and Brookhaven
National Laboratory during the summer of 1966.

*Stanley Predoctoral Fellow.
'f Presently on leave.
~J. Luttinger, in 1965 Tokyo Summer Lectures in

Theoretical Physics lW. A. Benjamin, Inc. , New York,
1966), Pt. I.

2V. Emery, Nucl. Phys. 19, 154 (1960}.
The original heuristic "classical model" was sug-

gested to us by V. Emery.
V. Emery and A. M. Sessler, Phys. Rev. 119, 43,

(1960). A typographical error should be noted in (A4)
of that paper, defining a term in G. This lacks a factor
(kF lk ) in the Fermi surface term. Au alternative
formalism which we do not employ is due to P. Ander-
son and P. Morel, Phys. Rev. 123, 1911 (1961).

5P. Morel and P. Nozieres, Phys. Rev. 126, 1909
(1962).

6Moreover, the entire contribution at this order is
due to the behavior of the q-p corrections at asymptot-
ically large momenta, P» kF.

Details of the proof and of other results cited here
will be published elsewhere. Results on the density ex-
pansion of 6U were proved explicitly for v belonging to
the class of three-parameter potentials of the form

v(r) = lim &6(r-a)—A, '5(r-5) with b&a,

simulating a hard core plus attractive tail. Parameter-
independent results are presumed to hold for all we11-
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behaved potentials of short range.
The mixtures have been analyzed as equivalent to

low-density fermion systems with an effective interac-
tion between He3 atoms: V. J. Emery, Phys. Rev. 148,
A138 (1966). However, the level of that approximation
does not yet permit a consistent treatment of the in-
duced force of Fig. 1.

~K. A. Brueckner, J. L. Qammel, and J. T. Kubis,
Phys. Rev. 118, 1095 (1960); P. Sood and S. Moszkow-
ski, Nucl. Phys. 21, 582 (1960).

~ A. Layzer and D. Fay, to be published.
~~N. Berk and J. Schrieffer, Phys. Rev. Letters 17,

433 (1966); S. Doniach and S. Engelsberg, Phys. H,ev.
Letters 17, 750 (1966).

~2See Ref. 10. The particle-hole spin-channel descrip-
tion is very convenient as soon as one gets away from
the low-density limit. In the nearly ferromagnetic lim-
it, the contribution of diagram (a) of Fig. 1 to the stat-
ic value of 6I is 2(-1) that of diagram (b), for individ-
ual l states.
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We report here an analysis of unstable modes
which take place in multipole configurations
and are localized along the magnetic field lines.
These types of configuration are characterized
by having magnetic field curvature and strength
varying periodically in such a way that they
are, on the average, stable against ordinary
interchange modes. But there remains the pos-
sibility that new types of modes, localized in
regions where the magnetic field profile is un-
favorable to forms of instabilities which are
not described by the ordinary fluid approxima-
tion, may arise. ' Here we consider modes
driven by a transverse density gradient and

the longitudinal electron temperature, finding
that they are likely to arise around the points
of maximum of the (unfavorable) magnetic cur-
vature or of minimum magnetic field (i.e, max-
imum ion polarization and finite Larmor-ra-
dius drift). We restrict ourselves to treating
configurations with closed lines of force, al-
though the localized feature of the modes we
describe makes possible their existence in more
complex configurations. ' In particular, we
use a guiding-center approximation which,
for the present case, gives a correct treatment
of a realistic configuration and at the same
time provides a better understanding of the
physical ingredients for the instabilities we
present.

We consider a low-pressure situation (P «I)
and look for electrostatic modes the growth

rate of which depends on electron-wave reso-
nance effects. So with cp as the electrostatic
potential (E = —Vp), and in the linearized ap-
proximation, we look for normal-mode solu-
tions of the form p =p, ()(, P) exp(iat+ime).
In fact we treat a toroidal configuration and
adopt the coordinates 8, the angle around the
torus; y, the magnetic potential such that B
=V)(; and g, such that 2m( is the flux of the
(poloidal) field contained within a magnetic sur-
face. ' We also assume a Maxwellian isother-
mal equilibrium represented to lowest order
by the distribution function f&

= exp( —E/T )p (g).
In particular we choose to consider modes whose
effective phase velocity along the lines of force
is larger than the ion thermal velocity and srnall-
er than the electron thermal velocity, so that
Uthi&&+pl/ ~B Vpl I &Uthe. This will imply
that ~ &~be, ~be being the average bouncing
frequency for trapped electrons. Under these
conditions we know' that the imaginary part
of the frequency is small in comparison with
the real part and that the stability properties
and the topology of the relevant modes are de-
termined, to lowest order, by the real part
of the frequency.

Because of all this we can adopt for both the
electrons and the ions proper fluid approxima-
tions, the results of which we have checked
also by direct integration of the Vlasov equa-
tion along particle orbits. Considering the ions
at first, we have

i&un +V (n u)+V (n u )+V tn u (B/B)]=0
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