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An expression for the transmission coefficient for the general case of an arbitrary
number of open channels, valid for all values of the ratio of the average partial width to
the average spacing, is obtained from a completely unitary matrix. For the purely elas-
tic-scattering ease, the average value and the mean-square deviation of the elastic-scat-
tering cross section are expressed in terms of the potential-scattering phase shift and
the ratio of the average width to the average spacing.

In the statistical study of the low-energy nucle-
ar reactions which pass through the formation of
a compound nucleus, one tries to express the
average quantities like the transmission coeffi-
cients' and the average cross sections in terms
of the averages of the resonance parameters of
the low-energy collision matrix. The resonance
parameters which enter into the expressions for
the average quantities are the partial widths and
the spacings of the poles of the collision matrix.
The two main difficulties in deriving these re-
sults have been (1) keeping track of the unitary
condition on the resonance-pole expansion form
of the low-energy collision matrix, and (2) valid-
ity of the expressions for all values of the ratio
of the average partial width to the average spac-
ing. Our aim in this note is to show that exact
expressions for the transmission coefficients
and the average cross sections can be obtained
if we start from the pole-resonance form of the
unitary matrix, which has been given recently by

V=OdO, (2)

where 0 is an m&m real orthogonal matrix and
d is a diagonal matrix, the elements of which
are d cc ' = exP(-i Pc)Ace '.

We first consider the purely elastic-scattering

us.
We have recently shown' that the unitary pole-

resonance form of the collision matrix U, based
on R-matrix theory or Feshbach's unified theo-
ry of nuclear reactions, ' can always be written
as

N

U(E)=V 1-i) V,
p, =l

where z p =Sp-2iI'p are the complex poles, and
the matrix elements of G& are the complex
width amplitudes. The matrix V gives rise to di-
rect reactions and for the case of m channels
can be written as
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case (m = 1); then the complex quantities G& are
given by

and write the energy average of the collision
function given by expression (1) as

(3)

Following Feshbach, Kerman, and Lemmer, ' we
use the Lorentz weighting function

(v(z)) = J~zp(z, z, )v(z)dz.

Using expressions (1), (3), and (4), we get from
expression (5)

I ].

z~ (z-z, )'+-,'I"
with

(4)
~ z -8 +-,'i(l-r )

&U&=exp(-2ip) II

Expanding the numerator and the denominator in
expression (6) in powers of 1/I, we get

(U) = exp(-2ip)

N 2

1+—Q (8 -z +-,ir )+ — Q (8 -z +-,ir )(8 -z +-,ir )+ ~ ~ ~
2i 1 ~ 2i 1 ~ 1 ~

I p, 0 p, I 0 '
p v 0 '

vp=l P &V

N 2
1+—p (8 -z --,ir )+ — Q (8 -z --,ir )(8 -z --,ir )+ ~ ~

2i 1 ~ 2i 1 ~ j. ~

I p 0 p 0 p, v 0 '
vp=l +&V

The second, third, ~ ~, terms in numerator and denominator are rewritten using the relations of the
type

N N

[ g (8 -z +-,'ir )I'= P (8 -z +-,'ir ) +2 Q (s -z +-,'ir )(s -z +-,'ir ).
0 p, p 0 p, p 0 p v 0 v

Expression (7) now becomes

(U) = exp(-2iy)

1+—p (8 -z +-,'ir )+—,—[Q(s z+-,ir )-j'- —,—p($ -z +-,ir )'+ ~ ~
2i 2i 2

~ . 2 1 2s 1 ~

I p, 0 '
p 2t I p 0 '

p, 2t I p. 0 '
P,/=1

1+—Q (h -z --,ir )+——[Q(8 -z --,ir )]'-——Q($ -z --.ir ) + ~ ~ ~
2i 1 2i2 1 2f 1 ~ 2

p 0 p 2t I p 0 p. 2t I p 0
p, =1

We further choose Eo such that

N
z =—+8.

p=l

This allows us to write the above expression as

(U) = exp(-2iy)

1 1 1 2 1 2i21-- p r +—-gr ———p(h -z +-,'ir )'+ ~ ~ ~

I p 2t I p, 2t I p. 0 '
p.

p, =1. p, p.

1 1 1 2 1 2i2
1+—g r +——gr ———g($ -z --,'ir )'+ ~ ~ ~

I p 2t I p 2t I p 0 p
p, =1 p,
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We now take the limit when I and N both become
large, such that the ratio I/N = 2'/mN=2D/w
remains constant, where D is the mean spacing
of the poles z&. Introducing the average width

&r&) in the usual way, ~'

(1/N)gr &r )

where the matrix 0& satisfies the sum rule

N N

Q e = g (z +iG ).
p,

This sum rule can be easily derived from ex-
pression (1). Since &Yp) is a positive-definite,
real, symmetric matrix, a real orthogonal ma-
trix T can be used to diagonalize it:

and dropping terms of the order of ~1/I, we ar-
rive at the following expression for &U):

T&Y )T=A
p

(14)

&U) = exp(-2iy-m&r )/D).
p.

It is easy to check that this expression reduces
to the familiar expression'

&U) = exp(-2im) [1-~&r )/D],
p,

when &1 &)/D «1.
We next consider the case of m open channels.

For this case the matrix G & satisfies the follow-
ing sum rule3:

Using expressions (12)-(14), making the earlier
choice for E„and doing the same limiting pro-
cess as we had done for the elastic-scattering
case, we arrive at the desired result

&U) = V T exp(-vA /D) TV.
d

We note that expression (15) is derived for the
general case, in which we have not put any re-
strictions on the background matrix V or the
complex quantities t"&. For the purely elastic-
scattering case, expression (15) reduces to ex-
pression (8) as it should. Using this expression
we can easily get expressions for the transmis-
sion coefficients Tz'.

where the elements of the real symmetric ma-
trix Y are defined in terms of a compound-nu-
cleus Hamiltonian. The diagonal elements of F&
are related to the total width I"& of the level lj. in
the following fashion:

(10)

Denoting the ensemble average by &), we find
from expression (10) that

g &Y )=&r ),

and therefore the average values of ~&z~ summed
over the channel index c give the average total
widths. In this sense &Y&cc) or &G~cc) can be
taken as the average partial widths.

To derive an expression for the matrix &U) we
follow the same procedure as was used for the
purely elastic-scattering case. Instead of ex-
pression (5), we now get the matrix relation

N E + ~iI-0
(12)

7 =1-l&U )i',
C CC

and the average partial total cross section
&o tot)

)=2~X [1-ae&U )].
tot 2

C C CC

We now pass a few remarks about the proce-
dure which we have adopted here and a relation
which has been obtained by Moldauer' to deter-
mine &U). This relation for &U) was then solved
only for the case in which direct reactions were
absent, which is not the case treated here. Our
relations (5) and (12) are exact and have been ob-
tained from a completely unitary matrix with no
restrictions on the direct reactions. It is unitar-
ity which allows us to express G& in terms of z

&
only, in the case of purely elastic scattering,
and to obtain the sum rules for the matrix G&
when we are dealing with an arbitrary number of
open channels. Since these relations implied by
unitarity are not used in Ref. 1, we cannot com-
pare our most general result given by expression
(15) with the approximate result given in Ref. 1.

For the purely elastic-scattering case, our
procedure can also be used to find &U ). We can
then immediately get expressions for the average

1512
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and the mean-square deviation of the elastic-
scattering cross section o. These are given by

(o) = (2wX')[1-(cos2q) exp(-w(I' )/D)],
p

(o')-(o)' = 2(nX')'[1 —exp(-2m(r )/D)].

(is)

As expected, expressions (1S) and (19) reduce
to the usual expressions obtained in the approxi-
mation of (I'&)/D «1.

I would like to thank Professor Virendra Singh

and Dr. N. D. Sen Gupta for helpful discussions.

P. A. Moldauer, Phys. Rev. Letters 19, 1047 (1967).
2T. Ericson, Ann. Phys. (N. Y.) 23, 390 (1963).
3Nazakat Ullah and C. S. Warke, Phys. Rev. 164,

1316 (1968), and Phys. Letters 26B, 556 (1968).
4A. M. Lane and R. Q. Thomas, Rev. Mod. Phys. 30,

257 (1958).
5H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958), and

19, 287 (1962), and 43, 410 (1967).
6H. Feshbach, A. K. Kerman, and R. H. Lemmer,

Ann. Phys. (N. Y.) 41, 230 (1967).

AN IMPROVED MODEL FOR COSMIC-RAY PROPAGATION

Peter D. Noerdlinger
Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa

(Received 1 April 1968)

A model for cosmic-ray propagation derived by Jokipii is modified to take into ac-
count particle mirroring. The diffusion coefficient for particles of known velocity and

rigidity is then determined by a limited portion of the field spectrum, instead of being
affected by all frequencies above a limiting one.

The interplanetary magnetic field, at least up
to about 1.2 A.U. from the sun, is known to be
fairly ordered, lying principally at the garden-
hose angle, '~ but with fluctuations of order 30%
on quiet days and more on disturbed days. Joki-
pii analyzed cosmic-ray propagation in a field of
this type, and showede~ that the motion perpen-
dicular to the mean field B, is controll~. ed by dif-
fusion in pitch angle ~= cos p. Following Joki-
pii' we denote the direction of Bo by z, the parti-
cle velocity by t/', its charge by Ze, and its ener-
gy by zm, c'. Define &uo and &cby &uo=BoeZ/ymoc
= V/rc The p. ower spectrum P,&(f) of the mag-
netic field fluctuation B,= B—B, is fair. ly isotrop-
ic in the xy plane, '~'~6 and we denote the part
Pxx =P that affects diffusion along Bo by P(f).
This spectrum is attributed to a power spectrum
P(kV~/2n) of field irregularities of wave num-
ber k being carried past the spacecraft at the so-
lar-wind velocity V~.

Jokipii's theory, as originally set forth, s leads
to divergent expressions if P(f) falls off as
steeply as f ' at large f. A later modification
of Jokipii's avoids the divergence prob:[em, but
it depends on an assumption of near isotropy for
the particles that we consider unnecessary, ' and
retains a dependence on the value of P(f) for all
f exceeding V~&uo/2z V. This dependence would
not produce very incorrect results unless P(f)
were found to have unexpected sizable spikes at

high frequency, but the theory to be presented
here derives an upper limit to the frequencies
that are significant for scattering particles of
known rigidity. This is physically more satis-
factory. Because we prefer' not to restrict the
form of the particle distribution function unduly,
we proceed from the original Jokipii theory'
with the review of a few key equations, and then
introduce the modification for mirroring.

Ignoring the slow diffusion in the xy plane, and
simplifying to a time-independent diffusion prob-
lem, we obtain from (J26)

2gV(&n/&z) = (&/& p, )[&(&n/& p)],

where we denote by ~ the Fokker-Planck coeffi-
cient for diffusion in p, &= ((&p)2)/&t. Denote

by N the particle density

N(z) = f,n(g, z)dg. (2)

n(p, z) = —,'N, (l+ az) +n, (p )
=- n, (z) + n, (p).

Thus, sN/Bz =No&, and the diffusion coefficient
Dzz is defined by

D =-F/N n,zz 0

1513

For a diffusion problem, we expect N(z) to be
linear in z, so we decompose n(p, z) into an iso-
tropic part no(z) linear in z and an anisotropic
part n, independent of ~:


