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where 6 is a unit step function and f(C) the dis-
tribution of particle capacitances. The conduc-
tance through a particle is proportional to the
area of the particle which in turn is proportional
to the capacitance. The other C factor in the
second integral stems from our choice of a uni-
formly distributed Vp.

1t is easy to adapt this model to account for the
effect of the superconducting transition of the Sn
particles. The main effects are to increase the
activation energy by half the superconducting en-
ergy gap in the particle and to change the densi-
ty of states. Calculations of the dynamical re-
sistance-versus-voltage characteristic using
Eq. (2) gives good agreement with the experi-
ment. In Fig. 3 the dashed curve is calculated
for T =0 and with f(C) computed from the elec-

tron micrograph assuming disklike particles
with a 15-A-thick oxide layer on both sides and
a dielectric constant of 10.

We wish to thank E. F. Koch for carrying out
the electron microscopy.
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CRITICAL PROPERTIES OF THE XY MODEL*
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The XY model of a quantum lattice fluid or a ferromagnet is studied by the method of
exact high-temperature series expansion. Nine terms are obtained in the free-energy
series and seven in the series for the square of the fluctuation in the long-range order.
Analysis of these series yields the critical values kT ./J=4.84+0.06, ¥=1.00%0.07, and

=-—0.20£0.20 for the fcc lattice.

The XY model of interacting spin-1 particles
is characterized by the interaction Hamiltonian,

5, = -J), (aiTa jtaa .T)
@) g
= —JZ; (o
(@)
where the sum is over nearest-neighbor pairs of
sites on a lattice and the o’s are Pauli matrices.
Like the Ising and Heisenberg models,! the XY
model is a special case of the anisotropic Hei-
senberg model.

Matsubara and Matsuda? introduced in 1956 a
lattice model for liquid helium which reduces to
the XY model for a hard-core molecular-inter-
action potential. In that case J=/?d/4mqa?,
where d is the dimensionality of the lattice, m
is the molecular mass, ¢ the coordination num-
ber, and a the nearest-neighbor distance on the
lattice. Matsubara and Matsuda were able to
show that, even in the molecular-field approxi-
mation, the XY model is more successful than
the ideal Bose gas in several respects in predict-
ing properties of the X transition.
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The XY model may also be realized in certain
magnetic insulators in which g, > g because of
a strong crystalline field splitting the s, =+3
Kramers doublet below the other magnetic sub-
states of an ion such as Gd. In particular,
Gd,(SO,), - 8H,0 seems to be such a substance .’

The physical significance of the anisotropic
Heisenberg model, both as a lattice gas and as a
ferromagnet, has been discussed recently by
Fisher* and Whitlock and Zilsel® without, howev-
er, their making very extensive calculations. On
the other hand, Yang and Yang® have obtained a
number of exact results concerning the energy
of the anisotropic Heisenberg model. Exact high-
temperature series expansion techniques have
been applied over a range of anisotropy including
the case of the XY model by Obokata, Ono, and
Oguchi’ and by Pirnie,® but their series have not
been extended sufficiently far to obtain reliable
information about the critical region.

A high-temperature expansion of the zero-field
partition function, Z, can be obtained starting
from the expression

Z =tr{l -BiC, + B?3C,2/21—- - - }. (2)
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In expanding the nth power of 3¢,, each term cor-
responds to a selection of n directed nearest-
neighbor pairs of lattice sites (some of which
may be repeated) which we may represent dia-
gramatically by a set of » arrows. The set of
b(<n) undirected bonds so covered constitutes a
subgraph of the lattice, the shadow graph g.
From the well-known commutation relations sat~
isfied by the operators a and «f, the trace in the

subspace of the jth site will vanish unless (i) there

are an equal number of operators a; and aiT
(equal number of arrow heads and tails), and
(ii) there is a regular alternation in the order of
a; and a; T operators (heads and tails alternate).
If (i) and (ii) are satisfied, the trace is unity un-

less no operators are included for the ith site in
which case the trace equals two. To determine
Z we need two kinds of information: (i) a set of
weak lattice constants of the shadow graphs,
available from work on the Ising and Heisenberg
models,®~!! and (ii) the number of allowable con-
figurations of arrows for each shadow graph.
The latter data, peculiar to this problem, have
been obtained with the aid of a simple computer
program. In this way we have obtained the first
nine terms in the partition function for arbitrary
lattice. From the zero-field partition function
may be obtained the entropy, internal energy,
and specific heat. For the fcc lattice the specif-
ic-heat series is

C/k=3K%+12K®+32.25K* +90K® +320.8749- - - K® +1312.1506- - - K"
+5465.5888- - - K®+22505.5368 - K%+ -. (3)

For the Ising and Heisenberg models it is customary also to evaluate the high-temperature parallel
susceptibility series, which for zero magnetic field is directly proportional to the square of the fluc-
tuation in the long-range order (parallel magnetization). For the XY model the long-range-order

(perpendicular-magnetization) operator,

M =m20,

@

does not commute with the Hamiltonian, and hence the corresponding (perpendicular) susceptibility
is no longer proportional to the square of the fluctuation in the long-range order. For the XY model

it is simpler to calculate the latter quantity, namely

N
1.
Y= 3, (ai'a.+a.Tai>
ni=t ©

s O _ i T
==lim o Intr exp{ B[JCOH\E(al. a;+a, az.)]}/B-

A=0 1,7

(5)

The calculations for the fluctuation differ from those for the partition function in that one of the ar-
rows is of arbitrary length and occurs always in a fixed position (e.g., first). We have calculated for
arbitrary lattice the first seven terms of the square of the fluctuation in the long-range order. For

the fcc lattice, the result becomes

Y=1+3K+16.5K2 +82K®+397.7917- . - K* +1918.9375K"
+9281.6583-- - K®+44902.3225- - K"+ - - -, (6)

As with the Ising and Heisenberg models, the
critical temperature for the XY model is most
precisely estimated from analysis of the series
for the fluctuation in the long-range order. Fig-

ure 1 shows a conventional ratio plot'? of the coef~-

ficients in the high-temperature expansion of ¥
for the fcc lattice from which we estimate 2T, /J
=K,"'=4.84+0.06, and y=1.00+0.07 in the
asymptotic form

Y~ F(T—TC)—Y. (7)
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Padé-approximant'® analysis yields K,~!=4.84
+0.05 and y=1.00+ 0.06, consistent with the ra-
tio method.

Figure 1 also contains a ratio plot of the coef-
ficients in the high~temperature specific-heat
series for the XY model on the fcc lattice. Tak-
ing K,7'=4.84+0.06 from the fluctuation-series
analysis, we estimate o =-0.20+0.20. This val-
ue of o almost certainly indicates that the specif-
ic heat of the XY model has at T, a finite cusp
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FIG. 1. Ratio of coefficients of the high-temperature
series expansion of the square of the fluctuation in the
long-range order (open circles) and the specific heat
(triangles), both for the XY model on the fcc lattice.
Solid lines indicate best fit and dashed lines limits of
confidence.

with vertical slope. Baker et al.!* come to the
same conclusions about the Heisenberg model on
the basis of somewhat shakier evidence.

Table I summarizes the above data for the XY
model and, for comparison, the corresponding
data for the Ising and Heisenberg models. We
might have expected, because of the “two-dimen-
sional” nature of the interaction in the XY model
as opposed to “one-dimensional” and “three-di-
mensional” interaction in the Ising and Heisen-
berg models, respectively, that the critical val-
ues for the XY model would represent some in-
terpolation between those for the Ising and Hei-
senberg models. In fact, the situation is more
complicated. The singularity in the square of
the fluctuation in the long-range order for the
XY model is less sharp than even in the Ising
model. The cusp in the specific heat resembles
closely that for the Heisenberg model. The crit-

ical temperature is nearly the same as that for
the Ising model.

Presumably, the perpendicular susceptibility
series would have a singularity very similar to
that of the square of the fluctuation, but the se-
ries is much more tedious to evaluate and we do
not yet have many terms. We have also obtained
the first six terms in the high-temperature ex-
pansion of the parallel susceptibility, which
agree exactly with the results of Obokata, Ono,
and Oguchi” and Pirnie.®! Because the parallel
susceptibility, 8M,/8H,, of the XY model is ex-
pected to resemble the perpendicular suscepti-
bility of the Ising model, little can be expected
of the series. This expectation is in accord with
the results; the first six terms of the parallel
susceptibility series are very irregular.

Finally, we may consider comparison with ex-
periment. For Gd,(SO,); - 8H,0, Wielinga, Lub-
bers, and Huiskamp?® have estimated for the low-
temperature side of T, the specific-heat critical
index ¢’ =0.60. For T'>T, the data are much
too scattered to make a reliable estimate of «.
Also, because of the importance of dipolar cou-
pling term, the XY model has limited relevance
for this substance.

As mentioned above,? the XY model was first
introduced as a model of a hard-core Bose fluid,
so the theoretical results may be compared with
the results of experiment!® on liquid He*. A cusp
of vertical slope may be difficult to distinguish
experimentally from an infinity in the specific
heat. However, the probable cusp height of ap-
proximately R/2 in the XY model seems in defi-
nite conflict with experiment. Presumably the
attractive tail of the intermolecular potential in
helium cannot be neglected if one is to obtain,
inter alia, an infinite specific heat.

One of us (D.D.B.) would like to thank Profes-
sor W. J. Huiskamp for an informative discus-
sion. We are indebted to Mr. C. J. Elliott for

Table I. Critical data for the XY model compared with previous work on the Heisenberg model and the Ising

model, all for the fcc lattice.

Height of Critical
Singularity, Entropy,
Model kTC/J L% o C(Tc)/k Sc/k
XY 4.84£0.06 1.00%0.07 -0.20£0.20 0.491%; 0.5570.001
Heisenberg® 4.013 1.43 -0.20£0.05 1.0 0.2 0.355
IsingP 4.897 5/4 $ w 0.591
aSee Ref. 14.

bsee Ref. 1 and D. L. Hunter, thesis, University of London King’s College, 1967 (unpublished).

1509



VoLUME 20, NUMBER 26

PHYSICAL REVIEW LETTERS

24 JUuNE 1968

computing assistance.

*Research supported in part by the U. S. Air Force
through Grant No. AF-AFOSR-1310-67.

IM. E. Fisher, Rept. Progr. Phys. 30, 615, (1967).

2T, Matsubara and H. Matsuda, Progr. Theoret.
Phys. (Kyoto) 16, 416 (1956).

*R. F. Wielinga, J. Lubbers, and W. J. Huiskamp,
Physica 37, 375 (1967). We are grateful to Professor
Huiskamp for sending us a copy of their results prior
to publication.

‘Ref. 1, Sec. 4.3.

5R. Whitlock and P. R. Zilsel, Phys. Rev. 13, 2409
(1963).

6C. N. Yang and C. P. Yang, Phys. Rev. Letters 13,
303 (1964), and Phys. Rev. 147, 303 (1966).

'T. Obokata, I. Ono, and T. Oguchi, J. Phys. Soc.
Japan 23, 516 (1967).

8K. Pirnie, unpublished. We are grateful to Dr.
Pirnie for informing us of his results prior to publica-

tion.

C. Domb, Advan. Phys. 9, 149 (1960).

M. F. Sykes, J. W. Essam, B. R. Heap, and B. J.
Hiley, J. Math. Phys. 7, 1557 (1966).

G, A. Baker, H. E. Gilbert, J. Eve, and G. S. Rush-
brooke, Brookhaven National Laboratory Report No.
BNL-50053 (T-460), 1967 (unpublished).

2¢. Domb and M. F. Sykes, Proc. Roy. Soc. (London),
Ser. A 240, 214 (1957); Ref. 1, Sec. 7.2.

3G, A. Baker, Phys. Rev. 122, 1477 (1961), and in
Advances in Theoretical Physics, edited by K. A.
Brueckner (Academic Press, Inc., New York, 1965),
Vol. I, p. 1.

4G, A. Baker, H. E. Gilbert, J. Eve, and G. S. Rush-
brooke, Phys. Rev. 164, 800 (1967).

1w, M. Fairbank and C. F. Kellers, in Critical Phe-

nomena, Proceedings of a Conference, Washington,
D. C., 1965, edited by M. S. Green and J. V. Sengers,
National Bureau of Standards Miscellaneous Publica-
tion No. 273 (U.S. Government Printing Office, Wash-
ington, D. C., 1966), p. 71.
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OF THE ELASTIC-SCATTERING CROSS SECTION
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An expression for the transmission coefficient for the general case of an arbitrary
number of open channels, valid for all values of the ratio of the average partial width to
the average spacing, is obtained from a completely unitary matrix. For the purely elas-
tic-scattering case, the average value and the mean~square deviation of the elastic~scat-
tering cross section are expressed in terms of the potential~scattering phase shift and
the ratio of the average width to the average spacing,.

In the statistical study of the low-energy nucle-
ar reactions which pass through the formation of
a compound nucleus, one tries to express the
average quantities like the transmission coeffi-
cients' and the average cross sections? in terms
of the averages of the resonance parameters of
the low-energy collision matrix. The resonance
parameters which enter into the expressions for
the average quantities are the partial widths and
the spacings of the poles of the collision matrix.
The two main difficulties in deriving these re-
sults have been (1) keeping track of the unitary
condition on the resonance-pole expansion form
of the low-energy collision matrix, and (2) valid-
ity of the expressions for all values of the ratio
of the average partial width to the average spac-
ing. Our aim in this note is to show that exact
expressions for the transmission coefficients
and the average cross sections can be obtained
if we start from the pole-resonance form of the
unitary matrix, which has been given recently by
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us.?

We have recently shown® that the unitary pole-
resonance form of the collision matrix U, based
on R-matrix theory* or Feshbach’s unified theo-
ry of nuclear reactions,® can always be written
as

N G
U(E) = VI:I—i Dt ]V, (1)
pu=1 %

where zy =8, —-3iT'; are the complex poles, and
the matrix elements of G u are the complex
width amplitudes. The matrix V gives rise to di-
rect reactions and for the case of m channels
can be written as

V=0d0, (2)

where O is an m Xm real orthogonal matrix and
d is a diagonal matrix, the elements of which
are dec’=exp(—i@c)dcc’.

We first consider the purely elastic-scattering



