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collisions, and the contribution of light parti-
cles to the energy density is known to be small.
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High-temperature expansions of the susceptibility and internal energy (specific heat)
are presented for general lattice structure for a system of isotropically interacting unit
vectors (or "classical spins") which are constrained to lie in a plane. A phase transi-
tion (Tc & 0) is indicated for two-dimensional lattices; the expected result To =0 is
found in one dimension, but only upon choosing a more suitable expansion parameter
than J/kT. Similarities with the corresponding expansions of the S =2 Ising and classi-
cal Heisenberg models are pointed out; in particular, it is found that certain critical
properties of this planar model appear to be bounded on one side by the Ising model and
on the other side by the Heisenberg model.

Consider a system of isotropically interact-
ing unit vectors constrained to lie in the x-y
plane and described by the Hamiltonian K

(if) SixSfx+SiySJX ' where -2Z is the
energy of a nearest-neighbor pair of parallel
"spins". ' Bowers and Joyce' have very recent-
ly published, for the fcc, bcc, and sc lattices,
the high-temperature expansions for the reduced
susceptibility

n=l

and the specific heat

C =k Q c (J/kT)
n=2

(2)

of this planar model. Here we present the cor-
responding expansions for general lattice struc-
ture (together with an additional term for loose-
packed lattices), and analyze the series for
one- and two-dimensional as well as for three-
dimensional lattices. We also re-express the
susceptibility and internal-energy series in
terms of the new expansion parameter zo —=I,(K)/
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I,(K), where K-=2JP-=2J/kT and the I„(K) are
modified Bessel functions of the first kind.
We find that this new expansion for the planar
model bears certain similarities to the corre-
sponding expansions for the Ising model (one-
dimensional spins) and the classical Heisen-
berg model (three-dimensional spins).

The expansions (1) and (2) can both be obtained
directly from a knowledge of the spin correla-
tion function (Sy ~ Sg)pP. The diagrams required
to calculate (Sf Sg)p are identical to those
used in the calculation' of (Kj' 5g)pII for the
classical Heisenberg model; so one need only
re- evaluate —for two-dimensional spins -the
averages associated with each diagram The
requisite single-spin averages are easily shown

to be

2k 2l P I'(k+ —
)I'{1+ —,')

x y 0 ml"(k+i+1)

where (8)c denotes the p =0 thermal averageP
of the operator 6. We have obtained gener-
al-lattice expressions for the coefficients a~
in Eq. (!1) (through order n, =8 for close-packed
and through order n=9 for loose-packed lat-
tices), and for the coefficients cuP of Eq. (2)
(through order n= 9 for close-packed and or-
der n =10 for loose-packed lattices).

We find the specific heat series for the two-
dimensional lattices to be so irregular' that
they cannot be readily used to estimate values
of the critical temperatures T~. However,
the susceptibility series appear to diverge at
nonzero Tz for the triangular and square lat-
tices (see Fig. 1). This is particularly intrigu-
ing, since the indicated phase transition, if

/

real (for there is nothing rigorous about extra-
polating from a finite number of terms of an
infinite series), would have to be to a new type
of low-temperature phase' with no "infinite-
range" order

M ~[ lim (S ~ S ) j'~',
A-~

yet with sufficient "long-range" order so that
)(ccPR(S0 S&)p diverges to infinity.

For the one-dimensional linear chain, both
the susceptibility and specific-heat series are
too irregular to permit extrapolation to the
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known'&' result T~ =0.' However, we have ob-
tained a much smoother series (and one which
extrapolates directly to Tc = 0) by re-expand-
ing the susceptibility in the new expansion pa-
rameter w —= I,(K)/I, (K). Our choice of w was
motivated by the similarity among the exact
expressions

I
)( = (1+v)/(l-v), (4a)

I'
= (1+w)/{l-w), (4b)

H
= (1+u)/(1-u) (4c)

for the reduced susceptibilities of, respective-
ly, the S= 2 Ising, classical planar, and clas-
sical Heisenberg models', here v —= tanhK and
u —= Z(K) = cothK-I/K. M The coefficients A

in the new expansion

)( =1+ QA w

n=l

are obtained from the general-lattice expres-
sions for the a+P of Eq. (1) by substituting in

!
Eq. (5) the small-argument expansion of w

=I (2j)/I, (2j),

FIG. 1. The sequence pz=—~jayaz y for the triangu-
lar lattice (z =6) and the sequence ps+ 1' =—(as+ 1/

1) '/ai for the square lattice (z=4). If these se-
quences approach limiting values as n- ~, these val-
ues are kT~ j&J.

~ ~

.2S O0, 2Ã 1
=j(I--,' j' + -' j'-(l l /48) j' + (19/1 20)j'+ ~ ~ ~ J

n t (n—1)I (n l)'
n=O n=o
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Table I. Qeneral-lattice expressions for the Dg through order n = 8 (through
order n =9 for the subclass of loose-packed lattices). Notation as in C. Domb,
Advan. Phys. 9, 149 (1960).

P
3

PD4—

6P3

- Sp4 -.3p3

D = - 10p5 - 4p4 + 7.5p3 + 6p5
P

P
D6 — - 12P6 - 5p5 + 10p4 + 13p3 + 6 [p6~ + p6g] + SP6~ + 38p

D
P
7

P
D8

14p — 6p + 12.5p + (7/3)p + 5.25p + 6 [p + p + P f]

10p + 8 [p7d + p ] + 66p + 18p + 41~+ 24p + 12P d + (244/3)P

16P — 7p7 + 15 6 + (35/12)p5 + (44/3)p4 - (343/24)p3 + 6 8 + PSb + 8|- + PS

10 [pS + pSf + pS ] + [pS + PS~ + pS + pSk] + 12PSg + 4pS + 72 [pS + p8 ]

[p7 + P7&] + 74p7 + 24 [P7& + p ] + 18p f + 64p + 10p + 105p

+ {181/3)p & + 22p6 — (37/3) p5

D Sp8 + 5p + (26/3)p + 6 [P k+ P ] + Sp ~ + 10p9

18p8 + 24p & + 96p8 + 8p + (97/3)p + 53P6

in powers of j=—PJ = 2K, and then equating coef-
ficients of successive powers of j in Eqs. (1)
and (5)." We have in this fashion calculated
general-lattice expressions for the coefficients
A & in Eq. (5).

These expressions are too lengthy to list
here; they may, however, be directly obtained
from the (much less lengthy) expressions in
Table I for a new set of coefficients DnP de-
fined by

P -2 2 P n=-(1—ozo) [1-(cr—1)w —mv + g D w ], (7)
n=3

(10a)

and

E = -2tu,P
(10b)

nectivity"- of the lattice, and one might expect
extrapolations based upon high-temperature
expansions carried beyond second order to be
more realistic than the Bethe-Peierls approx-
imation. '

The specific heat is by definition the temper-
ature derivative of the internal energy, which
for a linear chain is

E =-2',I

upon using the recursion relation FIE = -2tu. (10c)
P I) P+2g~ P 2~ P

n n n 1 n 2
(8)

From Table I we see that for a "Bethe lattice"
(a lattice with no polygons), D„+=0 for n~3
and Eq. (7) reduces to the result of the Bethe-
Peierls approximation,

= (I +so)/(I-oze).
-P

In fact, the Bethe-Peierls result (9) is exact
for lattices with no closed circuits. But com-
mon ("multiply connected") crystal structures
found in nature possess many closed circuits,
and the DnP are by no means zero. Thus in-
cluding terms in the high-temperature expan-
sion (7) beyond order n=2 corresponds in some
sense to taking account of the multiple con-

Consequently, we have used Eq. (6) together
with our general-lattice expressions for the
cn& of Eq. (2) to obtain the coefficients BnP
in the new expansion

P J " P n

n=2

the general-lattice expressions for the Bn P
are given in Table II."

The behavior of the new coefficients AnP
and BnP is generally smoother than that of
the coefficients anP and c+P in the old expan-
sions, thereby increasing the subjective reli-
ability of extrapolations based thereon. More-
over, the planar critical properties which we
studied —T~, y, e, v, and q —appear to be bound-

152



Vol.uME 20, NuMBER 4[ PHYSICAL REVIEW LETTERS 22 JxNUxRv 1968

Table II. General-lattice expressions for the B„ through order n = 9 (throughV

order n =10 for the subclass of loose-packed lattices}. Notation as in C. Domb,
Advan. Phys. 9, 149 (1960}.

P
3 P3

8p4

P
B5

B
P
6

P
B7 =

P
B8

10p5 - 9p3

12P6 - 12p4 — 10.5p3 — 18p5

14P7 — 15p5 + P3 — 42P7 — 21P6b P5

16p - 18p - (41/3)p + (71/4)p — 48 [ p + p ] - 24 [p + p j

6p7 96p6d 28 3p6 + P6b~ + 89 3 p5

Bg 18p - 2lp + (5/3) p + (485/24)P3 - 54 [ P9 + 9f + h~
- 126pP

8 + b~ [P8 + P8 ~ [ 8 + 7hj 31.5P7b + 40. 5P7c

63P7f + 156P7 + 0 '75P6b + 360P6d + 180P7g ' 6b 6d 5a

B10 = 20p10 - 24p8 + 2p6 + 25p4 - 60 [p10b + 10ct 30pgy - 70 [pgm + P8c - 80P8gP

+ 72p - (107/3) p7 + 136p

ed on one side by those predicted by Ising cal-
culations, and on the other side by those pre-
dicted by the classical Heisenberg model. E.g. ,
for the fcc lattice, tc —= Tc/TM =0.816, 0.802,
and 0, 795 for the Ising, planar, and Heisenberg
models, respectively, ' similarly, Z=—1~, 1~~,

*Operated with support from the U. S. Air Force.
This "planar" model was solved by E. Lieb,

T. Shuitz, and D. Mattis [Ann. Phys. (N. Y.) 16, 407
(1961)]for the linear antiferromagnetic chain for S =2
without the restriction that the spins interact isotropi-
cally. More recently, the classical isotropic planar
model has received attention (V. G. Vaks and A. I.
Larkin, Zh. Eksperim. i Teor. Fiz. 49, 975 (1965)
[translation: Soviet Phys. —JETP 22, 678 (1966)];
L. P. Kadanoff et al. , Rev. Mod. Phys. 39, 395 (1967);
Ref. 2) as a lattice model for the A, transition in a
Bose fluid; so far as we know, this has not been
proven to be rigorous.

R. G. Bowers and G. S. Joyce, Phys. Rev. Letters
19, 630 (1967). Note that Bowers and Joyce define K
—= J/kT; whereas we define K—:2J/AT.

3H. E. Stanley, Phys. Rev. 158, 537 (1967).
Thus the illustrative example in Fig. 6 of Ref. 3 is

changed only in that the averages on the second line of
Fig. 6 must be evaluated using Eq. (3) [i.e. , $) is re-
placed by $&i].

5The specific-heat series for the triangular, square,
and honeycomb lattices in the classical Heisenberg

model are also too irregular to predict a value of &~.
Indeed, it may well be that there exists no infinity in
the specific heats of these models for two-dimensional
lattices. See, e.g. , the concluding remarks in B. Jan-
".ovici, Phys. Rev. Letters 19, 20 (1967).

The spontaneous magnetization, order parameter,
or "infinite-range order" I has been proven to be zero
for the planar model by N. D. Mermin and H. Wagner,
Phys. Rev. Letters 17, 1133 (1967). However, the
proof fails to exclude the possibility of a novel type of
second-order phase transition with infinite susceptibil-
ity but zero order parameter. E.g. , low-temperature
approximations for the Heisenberg model [F.J. Dyson,
unpublishedt and for the classical isotropic planar mod-
el [F. Wegner, to be published] predict (S0 ' SR)p

-R~~
so that I=0; yet for sufficiently small T, X=~. See
also J. W. Kane and L. P. Kadanoff, Phys. Rev. 155,
80 (1967); T. M. Rice, Phys. Rev. 140, A1889 (1965);
H. E. Stanley and T. A. Kaplan, Phys. Rev. Letters 17,
913 (1966), and J. Appl. Phys. 38, 975 (1967).

VQ. S. Joyce, Phys. Rev. 155, 478 (1967).
BThe linear chain susceptibility )( = Q„a„(J/kTP

for the classical Heisenberg model is also too irregu-
lar to extrapolate; a much smoother series which extra-
polates directly to Tz =0 was recently obtained [H. E.
Stanley, Phys. Rev. 164, 709 (1967)] by re-expanding
XH in the new parameter u —=Z, (K) = cothK —1/K.

M. E. Fisher, Am. J. Phys. 32, 343 (1964).
~ A clearer and more precise terminology is to call

the Ising, planar, and Heisenberg models "classical
isotropic models" for, respectively, one-, two-, and
three-dimensional spins (or "vectors"). It is possible
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to solve the linear chain exactly (as well as to calcu-
late high-temperature expansions) for arbitrary-dimen-
sionality spins [H. E. Stanley, to be published].

~Thus, eg. AP ~Pz; AP ~P za. ; AP ~P
1 1 ~ 2 2 & 3 3

+2A&P =z02 —6p3 [notation as in H. E. Stanley, Phys.
Rev. 158, 546 (1967)]. The A are easily deduced
from Table I and Eqs. (7) and (8).

~2Expansions analogous to Eq. (7) and Eq. (11) have
been carried out for the Ising and classical Heisenberg
models by, respectively, M. F. Sykes [J. Math. Phys.
2, 52 (1961)]and Stanley [Ref. 8]. The remarks con-
cerning the Bethe-Peierls approximation [Eq. (9)] also
apply to these other two models, with m replaced by v

and u, respectively.
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Specific-heat measurements have been the
principal source of information relating to hy-
perfine interactions in the rare-earth metals.
This has been true primarily because the meth-
od is applicable to any sample. The low-tem-
perature specific heat C of these metals may
be written

where the terms represent the lattice, elec-
tronic, magnetic, and nuclear (hyperfine) con-
tributions, respectively. For most of the rare-
earth metals CL + CE+ CM contribute less than
1% to C at temperatures below =0.2'K. With
few exceptions previous specific-heat measure-
ments have extended only down to =0.4'K, hence
leaving C~ partially obscured by the other con-
tributions. In order to determine C~ unique. —

ly we have made heat-capacity measurements
on the metals Pr, Nd, Sm, Tb, Dy, Ho, and
Tm within the temperature range 0.02-0.4 K.
Our data suggest the existence of a coopera-
tive interaction between nuclei.

The polycrystalline metal samples' of rough-

ly 10-g mass were cooled in an adiabatic-de-
magnetization cryostat. Heat capacities were
measured to an accuracy of about +1%. Tem-
peratures were determined to +0.2%+6,, where
a (0&a&0.001'K) is due to the shape correc-.
tion of the cerium-magnesium-nitrate magnet-
ic thermometer. Details will be presented in
a forthcoming publication. 2

Of the rare earths the metal most amenable
to analysis should be Tm, since there is only
one stable isotope (Tm'") and that has a nucle-
ar spin I of —,

' resulting in only two energy lev-
els. Our data for Tm are shown in Fig. 1 with
the data of Trolliet~ and of Lounasmaa. In
view of the obvious discrepancies let it be not-
ed that our sample was rerun one month after
the original run, having been remounted with
a different heater and with the thermometer
recalibrated. It was run after exposure to mag-
netic fields &10 G and &10' G. All data are
included in Fig. 1; the data therefore repre-
sent a unique heat capacity for our sample.
The arrow in Fig. 1 indicates that temperature
below which C = C~ to within roughly 1%.
C~ is a Schottky-type heat capacity given by

I I
. Z . Z (W, '-W. W.) exp[-(W. + W.)jkT]

N (kT) I I
. Z . Z exp[-(W. + W. )jkT]

where R and k are the gas and Boltzmann con-
stants and 5& are the energy levels of the nu-
cleus which are typically expressed as

W./k =a'I +P[1 '—,'I(t+1)]. (8)
8 z

The two terms arise from the interaction of
the hyperfine fields with the nuclear magnet-
ic dipole moment and the nuclear electric quad-

! rupole moment, respectively. The hyperfine
fields are primarily due to unpaired 4f elec-
trons which are rather well isolated within
the host ion, and which are polarized at the
temperatures of interest here.

For Tm no attempts at nmr have been suc-
cessful as yet, but Mossbauer measurements'
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