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It is shown that Fermi-liquid interactions in the alkali metals lead to a family of long-
wavelength electromagnetic modes propagating parallel to a uniform magnetic field,
near the cyclotron frequency. In contrast to the perpendicular case, however, there is
a cutoff wavelength that increases with decreasing Fermi-liquid interaction, and can be
in the range of 10 to 100 cyclotron radii, for the size of interaction now indicated in po-
tassium.

Platzman and Walsh' have measured the dis-
persion relation of some of the plasma modes
propagating perpendicular to an applied magnetic
field in potassium, and have emphasized that
such experiments enable one to evaluate the spin-
independent Fermi-liquid parameters of the elec-
tronic system in alkali metals. A general theo-
retical discussion of the dispersion relation for
plasma modes propagating at an arbitrary angle
to the magnetic field was given by Silin. More
recently two of us' have reformulated the prob-
lem of propagation perpendicular to the field in
a form particularly suitable for wavelengths
large compared with the cyclotron radius (X
= IkvF/~c I «1).

In this note we extend the approach of Ref. 5

to the case of propagation parallel to the field.
We find that a family of long-wavelength plasma
modes continues to exist at frequencies near the
cyclotron frequency, but, in contrast to the per-
pendicular case where modes propagate at any
wavelength, all modes now have a short-wave-
length cutoff. Roughly speaking, modes will
propa, gate only if X is less than a typical Fermi-
liquid para. meter, A. Very little is now known

about the A' s, but data indicate' that in potassi-
um A, and A, are on the order of 10 '. If the
cutoff wavelength is really this la.rge the modes
will be substantially more difficult to see in the
kind of standing-wave experiment by which the
perpendicular propagating modes were observed, '~'

thicker sa,mples, higher purity, and stronger
magnetic fields being required. However, be-
cause there is as yet no evidence that the small
size of ~, and A, in potassium is typical of the
alkalis, and because the purities and field strengths
necessary to observe the parallel propagating
plasma modes need not be inaccessible, it seems
importa, nt that experimentalists be aware of the
theoretical prediction that the modes exist. ~

The frequencies of the modes propagating par-
allel to a uniform magnetic field in the collision-
less regime (~7»1) are given by the eigenfre-

quencies of the kinetic equation
1
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The magnetic field is taken to be along the s ax-
is, and v(&, p) describes the deformation of the
Fermi surface associated with the mode. If

then

v =y v, y =1+2 =1+I" /(2l+1),

where the I" l or Al are the spin-independent Fer-
mi-liquid interaction parameters. Except for
the direction of k and the absence of an explicit
external driving field, (1) is identical to Eq. (1)
of Ref. 5, where a fuller expla, na, tion of the nota. -
tion is given.

Using the method of Ref. 5 one easily calcu-
lates that to second order in k, normal modes
propagate at frequencies

X2 9-m2 y~
co = p724p p 1+

2m c 2 m 35 y2-ys

The coefficients of the quadratic terms in (4)
all diverge in the limit of vanishing Fermi-liquid
interaction (yl-1). This is a reflection of the
fact that when yl= 1 Eq. (1) has a continuous
spectrum (at I &u + mme I - kvF) rather than a dis-
crete one, no matter how long the wavelength,
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(5)

where & projects on the space m =1, l -2.
If we expand the solution to (5) as

l ll'
l=2

then (5) reduces to

1

l'=2

1
T5 2 /1'

while the derivation of (4) assumes a discrete
spectrum of excitations.

This suggests that as the Fermi-liquid interac-
tion is turned off, the region above X= 0 for
which the spectrum of normal modes is discrete
and (4) is valid shrinks down to a point. Putting
it more physically, one suspects that as kvF/&uc
decreases for fixed nonvanishing Fermi-liquid
interaction, successively more of the propagat-
ing discrete modes (4) will separate off from the
continuum.

This conjecture is confirmed and illustrated
by explicit solutions to the kinetic equation in

which only a finite number of the Al are taken to
be nonzero. 2 First note that (1) separates into
independent equations for modes with azimuthal
dependence e~~&. Since only the m = 1 modes
will be coupled to an electromagnetic probe we
consider this case alone. " As in Ref. 5 we con-
sider (1) to be an equation in a space spanned by
the spherical harmonics, and note that for modes
with frequencies near &uc, provided &up'»tuc'
-k c2, the effect of the term in square brackets
is to require that the solution have negligible
projection in the l = 1 subspace. We can there-
fore drop the electromagnetic term" provided
me project the resulting equation onto the space
with l ~ 2:

X,(z) =A2/z[l-@2'(z)],

where

(5z2-1)EC„(z)-5z
5z[z~„(z)-1]

(1P)
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ll 2 2 2
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The function g(z) decreases monotonically from
—, at z = 1 to 0 at z = . Therefore, provided 1
+A, & 2 (i.e., &2 &7.5), there is a single root" that
cuts off at kvF/~c = IX2(1) I

=
I 5A2/(3 —2A2) I.

The dispersion relation for this mode from zero
k up to the cutoff is shown in Fig. 1 for the value
A, =-0.03 suggested by Platzman, Walsh, and
Foos in potassium.

The presence of only a single branch is, of
course, due to the neglect of the higher Cl's.
Keeping both C, and C, indicates the more gener-
al structure as mell as illustrating the sensitivi-
ty to Cs of the l=2 root. In this case the two

.08-

.06-

If only C2 C3 ''' Cn+1 are nonzero, then for
1 = 2, , n+ 1, (7) becomes an n&&n homogeneous
system. Setting the determinant of the coeffi-
cients to zero gives n functions, XI(z), l = 2, ~ ~ ~,

n+1. One easily reads off the dispersion rela-
tions for n discrete modes from these functions,
by plotting zXf(z)= (&ufl-(uc)/chic vs XI(z) k'vF/
&uc for positive values of Xf(z) [which is an odd
function of z because of the symmetry Jlp~(-z)
= (-1) + + 1Egi(z)]. The long-wavelength behav-
ior of the modes comes from values of I z I » 1."
The mode merges into the continuum at Iz I

= 1,
so that the cutoff wave vector for the mode &&l1

is kf = ~c IX)(1)I/vF.
Keeping, for example, only C, we find the root

where

CO-(0 Ac l
kv ' l 1+AF l

"Rc
.04-

l1 l'1
dQ.

[The entire effect of the projection operators is
to produce the last term in (7).]

I I I

I.OO l.04
/

FIG. 1. The dispersion relation kRc =kvp/&uc vs
uc/u, for A2 ———0.08, Ay=0, l&2. The curve termin-
ates at the cutoff wave vector, kB~ =0.049.
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bear in mind that as the cutoff wave vector is ap-
proached, the coupling of the modes to an elec-
tromagnetic probe will become exceedingly
small. It is therefore likely that only wave vec-
tors rather below the cutoff will be observed.

It is a pleasure to thank the Report Facility of
the Materials Science Center at Cornell for their
help in preparation of the figures.
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branches are most conveniently expressed by

(13)

where F, and Ys are the two roots of

(1-Y)(1-35z2csgI'/8C2) =g (15)

satisfying

Both branches are shown in Fig. 2 for two values
of A, (C,/C, =+—,) and A, = —0.03. Evidently the
l = 2 mode becomes more sensitive to 4, as the
cutoff is approached.

Further numerical analysis seems pointless,
except for a careful study of the actual boundary-
value problem for transmission through a slab,
until some experimental data become available,
and Figs. 1 and 2 should be regarded as typical
rough characterizations of the structure of two
of the modes one might find. Although experi-
mental considerations will favor seeking the
modes at the largest values of »F/~c (unless
the values of the Fermi-liquid parameters in po-
tassium turn out to be atypically low), one should

FIG. 2. The dispersion relation kR& =kvF/vc vs
&uc/~, for the two modes present when Al = 0, l & 3. A2
is —0.03 as in Fig. 1. Curves are drawn for the two
choices C3= A.5 C~, which have no particular signifi-
cance except as probable limits to the range over which

A3 is likely ta vary. The curves terminate at their cut-
off wave vectors.
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VThe F~ notation is Landau's and is used in most of
the helium literature. Silin writes A~ instead of E~,
while Platzman and Walsh use Al =El/(2l + 1), which
seems to be catching on in the plasma literature.

8This is in sharp contrast to the case of perpendicu-
lar propagation, in which the perturbation results are
well behaved in the free electron limit and the spec-
trum remains discrete (though highly degenerate).
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F2-only model, for example, the cutoff recedes to in-
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regions, two) propagate at any k for F2& 7.5.
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