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temperature T -T~, T, becomes shorter than
that in a normal state, and (ii) for temperatures
T «Tc(0), T, becomes longer compared with that
in a normal state. Our experimental result can
be understood qualitatively on the basis of the
theory of gapless superconductivity.
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It is shown that the Stark ladder for conduction electrons in a constant electric field
does not follow from the existing theory. The former proofs of the ladder are shown to
be based on inconsistent assumptions. A discussion is given of a tight-binding model
which leads to a ladder when overlap is completely neglected.

Since the Stark ladder for a Bloch electron in a
constant electric field was first predicted, ' a
number of attempts have been made to find ex-
perimental evidence for its existence. ' All these
attempts were unsuccessful, and different rea-
sons were given for the failure to detect effects
connected with the Stark ladder. ' It is shown
that the previous derivations of the Stark lad-
der'»' are based on inconsistent assumptions.
This statement is counter to the prevailing opin-
ion in the literature. '&' ' It was already pointed
out' that some previous calculations of the Franz-
Keldysh effect and Zener tunneling contain a con-
tradiction which reflects the inconsistency in the
Stark ladder. In order to obtain a qualitative pic-
ture of the problem, the tight-binding approxima-
tion for a Bloch electron in an electric field is
discussed. It is shown that a Stark ladder fol-
lows from the periodicity of the lattice if there
is no overlap bebveen electronic functions on dif-
ferent sites.

In order to show where the inconsistencies in
the previous derivations lie, we consider for
simplicity the one-dimensional case. Schrodin-
ger's equation for an electron in a periodic po-
tential V(x) and a constant electric field E is (A

=1)

1 -i—+ V(x)+eEx g(x) = eg(x).
2&l ~X

The first indication of a Stark ladder' came from
the translational features of the Hamiltonian (1).
It is easily seen that if & is an eigenvalue for the
state P(x), then

E+ maeE

is an eigenvalue for the state g(x-ma), where a
is the lattice constant and m is any integer. The
term maeE leads to what is called the Stark lad-
der. ' From Eq. (1) it is clear that since there
are no restrictions on ~ that one started with,
there is no reason to conclude that the only pos-
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8X (k) =
)I u *(x)i—u (x)dx

nm J nk 8k mk
(4)

with u„k(x) being the periodic part of the Bloch
function. The function Bn(k) is assumed to be
periodic because it appears as expansion coeffi-
cients in a series of Bloch functions ink(x) for
the solution of Eq. (1):

0(x) =KB (k)0 „(x)n
(5)

A one-band model is obtained by neglecting the
interband terms in Eq. (3), which then becomes

8
E (k) + eEi +eEX (—k) B (k) = eB (k). (6)
n 8k nn n n

Its solution is'

B (k) =const
n

i kx exp — [e-e (k)eE o n

eEX (—k)ldk .
nn

The periodicity requirement on Bn(k) leads to the

e =maeE+ fo
—[e (k)+eEX (k)jdk. (8)

a 2n/a

As is seen, now the energy spectrum is discrete,
the second term in (8) being a well-defined con-
stant. The inconsistency in this proof of Stark's
ladder is as follows. From Eq. (4) one has

8
i —u (x) =+X (k)u (x).

8k nk mn mk

The assumption that interband terms can be ne-
glected leads to

sible values of the energy are maes and that the
energy spectrum is quantized. One way to ob-
tain quantized levels is to limit the possible val-
ues of ~ by using a one-band model. '~'~' One
starts with the Schrodinger equation in the nk

representation, ' '
8

e (k)+eEi —+eEX (k) B (k)
n 8k nn n

+ g eEX (k)B (k) = eB (k), (3)
mwn

where

with the solution

u (x) = 4(x) exp( i-fX (k)dk),
nk nn

where C(x) is a function of x only. It is clear
that the usual boundary conditions on u„k(x),
namely

u (x) = exp(-i(2m/a)x) u (x),nk+ 2w a nk

are not satisfied by solution (11), and the as-
sumption (10) which comes from neglecting inter-
band terms for all values of k is therefore con-
tradictory. Since Eq. (10) cannot hold for all val-
ues of k [otherwise we would get solution (11)
with the contradictions mentioned beforeI, the
one-band model for the entire Brillouin zone is
inconsistent. Now, the periodicity requirements
on Bn(k) are a consequence of the boundary con-
ditions on u„k(x), and since we have shown that
the one.-band model does not hold for all k val-
ues, one cannot assume that solution (7) is cor-
rect for the entire Brillouin zone, and therefore
the periodic boundary conditions on Bn(k) that
led to the Stark ladder have no justification.

It is to be pointed out that the assumption B„(k)
»Bm(k) in expansion (5) would not be sufficient
for obtaining Eq. (6). The reason is that it is not
enough to assume that g(x) is expandable in one-
band Bloch functions. One has also to assume
that xtc)(x) can be expanded in one-band Bloch
functions. The last requirement will necessarily
lead to the assumption X„„(k)»Xm„(k)for num
and therefore to Eq. (10).

The most general proof of the Stark ladder,
without any assumption of a one-band model,
was given by Wannier. In order to discuss this
proof let us write down Schrodinger's equation
for a Bloch electron in a constant electric field
in the kq representation":

8

2m 8q' +V(q)+eE ~' —.+q) C)kq)
8k

= eC(kq). (12)

Equation (12) is an exact Schrodinger equation
for the problem. In Wannier's proof' an approxi-
rnate equation is used,

8

2m 8q
+V(q)+eE i —+q b (q;k)8k

=W (k)b (q;k),

i —u (x) =X (k)u (x)
8

8k nk nn nk
(io) where bf(q; k) is a Bloch-type function, l being a

band index, and Wi(k) is in some way connected

14"18
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with the real energy values of the system. It is
then shown that the function

g(q t) = b (q; k -eE t)

& exp f W (k)dk (14)

is an exact solution of the time-dependent Schro-
dinger equation

~

-i +U—(q)+eEq |t(qt) =i( 8 . &((qt)
85

The Fourier analysis of the solution (14) gives
then the possible energies of the system as

f W (k)dk+ maeE.
2n/a

(16)

This result was already obtained from transla-
tional symmetry and leads to no Stark ladder be-
cause e, like in (2), is arbitrary. We see there-
fore that Wannier's argument when applied to the
correct equation does not lead to the ladder. It
is to be noticed that the derivation of Eq. (13) is
based on a perturbation procedure'~' which for an
an electric field is very difficult to justify.

I et us now consider two limiting cases in the
dynamics of conduction electrons in solids and
demonstrate that a Stark ladder in the energy
spectrum is very improbable. In the limit when
the periodic potential of the crystal, U(x) in Eq.
(1), is very weak, one approaches the free-elec-
tron case for which the energy spectrum is
known to be continuous. " It is therefore clear
that one should not expect a Stark ladder to exist
when the periodic potential of the crystal is very
weak. This comment can be considered as an-
other indication of inconsistency in Wannier's
"general proof" because in the latter the strength
of the periodic potential is not mentioned. The

This is the familiar ladder (8). For deriving the
main result (16), Eq. (13) was used with the par-
ticular assumption that the quantity Wt(k) de-
pends on a band index l and on k. This assump-
tion is very crucial in Wannier's proof of the lad-
der. It makes the first term in formula (16) a
well-defined constant. As was already men-
tioned, it is this restriction that leads to a Stark
ladder. If, however, in Wannier's proof one
would start with the exact Eq. (12) and not with

Eq. (13), then Wt(k) in formula (16) would have
to be replaced by the energy ~. The result would

be
e+ maeE.

other limiting case is the tight-binding approxi-
mation. A Stark ladder is most favorably expect-
ed in solids where such an approximation is ap-
plicable. ' ' We show that this view is unjustified
for conduction electrons and that no ladder is ob-
tained even in the most favorable case for its ex-
istence. In the tight-binding approximation the
potential of the crystal is written as a sum of
atomic potentials VA.

N
U(x)= Q U (x~a),

n= 1
(18)

where we have assumed that the length of the lin-
ear chain is Na Let. g~(x) be a solution of Schro-
dinger's equation for an isolated atom corre-
sponding to the energy ~A. Consider first the
most extreme limit when there is no overlap be-
tween different atomic functions and between an
atomic function on one site and an atomic poten-
tial on any other site. For this case, in the ab-
sence of an electric field, any atomic function
gg(x-ma) will be an eigenstate of Eq. (1) corre-
sponding to the energy ~A. The level eA is there-
fore N-fold degenerate. When considered as a
perturbation, the electric field will split this lev-
el into N sublevels with energies

+ eEX+ meEa
m A

(19)

where m assumes values from 1 to N. The quan-
tity eEX gives the regular atomic Stark shift":

eEX=eE fx I ( (x) I'dx. (20)

The state that corresponds to em in (19) is (~(x
-ma). In order for the perturbation procedure to
be valid the width of the split level, ¹Ea,has to
be smaller than the energy interval to the next
atomic level. The above result is therefore cor-
rect only for a limited finite crystal. It is impor-
tant to notice that the ladder structure in the
spectrum (19) follows merely from the periodic
spacing of the isolated atoms and has nothing to
do with any band structure in the spectrum of the
solid. The ladder follows from the fact that the
potential difference on adjacent sites in the crys-
tal is originated by the electric field only, and
equals eEa. In a real crystal, however, there is
always some overlap between adjacent atomic
functions, which is the origin of energy bands.
The width of a band ~~ in the tight-binding ap-
proximation is given by the overlap integral and
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is of the order"

ae- fg *(x)V (x)( (x+a)dx. (21)

Result (21) is obtained from Eq. (1) by consider-
ing the periodic potential as a perturbation on a
set of isolated atoms in the case E =0. Under
this crystal perturbation the N-fold degenerate
atomic level splits into N levels that form a band
of width &e. The spacing between the levels in
the band is of the order Ae/N. One arrives
therefore at the following result: When there is
no overlap in the crystal, Eg. (1) leads to a
Stark ladder (19) with a spa.cing eEa, while,
when E =0 and the overlap is taken into account,
Eq. (1) gives a band of width &e [relation (21)]
with levels of the order &e/N apart. It is clear
that when both perturbations are switched on (a
Bloch electron in an electric field), a Stark lad-
der (19) could be expected only when Ae/N is
much smaller than eEg. An exact Stark ladder
(19) is obtained only in the limit of a vanishing
band width, ~& =0. We come to the conclusion
that the banding of an atomic level destroys the
Stark ladder and that the latter should not be ex-
pected for conduction electrons in crystals. The
ladder (19) that is predicted by the tight-binding
approximation is connected with an array of iso-
lated atoms and follows from the periodicity of
the crystal only. Such a ladder could in principle
be measured by exciting a nonconduction electron
to jump from one site in a crystal to the next
one.

The inconsistency in using Bloch functions for
the one-band approximation' ' can now be seen
from a different point of view. For constructing
a Bloch function (zy(x) out of atomic functions

gg(x) in the tight-binding approximation, the fol-
lowing expression is used'~:

N
(x) = Q exp(irma)g (x-ma).

nk
rn =1

(22)

It is easy to check that g~y(x) is a Bloch function
when the summation in (22) extends from -~ to

However, for a finite N (we cannot assume
that the N atoms form a part of an infinite chain
when E co) P~p(x) is no longer a Bloch function.
In the absence of an electric field one can make

g„p(x) to be a Bloch function by bending the chain
into a circle" and the result (21) will hold. This,
however, is impossible when an electric field is
present because the potential of the field will be-

come discontinuous. In order to use Bloch func-
tions in the tight-binding approximation when an
electric field is present, therefore, one has to
deal with an infinite chain. This will lead to an
infinite number of levels in the Stark ladder (19)
[see also result (8)] which is meaningless be-
cause the ladder then covers the whole energy
range from -~ to +~. It follows therefore that in
the considered tight-binding model the one-band
derivation of the Stark ladder'~'~' [formulas (5)-
(11)]is incorrect.

In conclusion let us point out that the previous
derivations of a Stark ladder for conduction elec-
trons in solids are inconsistent. Both the free-
electron and the tight-binding models testify
against the existence of such a ladder. This
therefore casts doubts whether the experimental
attempts to find effects connected with the Stark
ladder for conduction electrons' will be success-
ful.
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Measurements of the spin-resonance linewidth for Mn in dilute copper alloys provides
evidence of the extended nature of the magnetic impurity wave function in the metal and
allows a straightforward determination of the s-d admixture Vdp —1 eV. A theoretical
treatment of the local moment spin relaxation via the distant impurity spin-orbit inter-
action is given.

Recently, measurements of the electron spin-
resonance linewidth of Mn in copper have con-
firmed that the s-d exchange interaction is the
mechanism responsible for the observed line
broadening with increasing temperature. ' The
linewidth increases linearly with temperature,
as predicted for a "bottlenecked" system by Ha-
segawa. ' However, we have observed that the
linewidth becomes temperature independent at
sufficiently low temperatures. Moreover, when
nonmagnetic impurities are added, the residual
linewidth increases linearly with impurity con-
centration. Figure 1 shows the residual line-

width for various concentrations of Si and Al ad-
ded as impurities to 0.1$o Mn in copper. The
arc-melted alloys were prepared in our labora-
tory and were subsequently annealed and quenched
from 1000'C. Metallographic inspection showed
no precipitation. The quoted impurity concentra-
tions were obtained from chemical analysis. All
measurements were made on powder samples
(&30 p) at 30 GHz. The linewidths shown in Fig.
1 are temperature independent for T&4.2'K.

We propose that the mechanism responsible
for this temperature-independent residual line-
width arises from the admixture of conduction-
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FIG. 1. Mn spin-resonance linewidth versus concentration of Si and Al impurity in copper. The pure-sample
linewidth (i.e. , no added impurity) is caused by surface relaxation. The linewidth increases at the rate of 72 G/%
Si or 38 6/% Al. The measured widths are temperature independent below 4.2'K.
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