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fields. Although ape did observe results similar
to those of Fig. 1, experimental difficulties
forced us to devote most of our efforts to the lon-
gitudinal mode.

Note added in proof. -Borman, Gorelik, Niko-
laev, and Sinitsyn" have measured the effect of
an alternating magnetic field on the thermal con-
ductivity of oxygen and have observed an effect
related to molecular precession.
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We report measurements of the velocity of second sound near Ty. It is found to van-
ish with the 0.386 power of Tg —T. The results confirm the theoretical expression and

permit a direct asymptotic comparison for the first time of independent but theoretical-
ly equal quantities.

We have measured the velocity of second sound,
U„as a function of temperature near the g tran-
sition of helium. The results, which extend from
2 @10 ' to 4 x10 ' deg below T~, are shown in
Fig. 1, which displays on a log-log plot the
square of the measured velocity as a function of
the temperature difference t = T~-T. The straigh1
line given by

U 1203to. '(m/sec

010 s it&&
3

s & s 10

with a carbon resistance thermometer embedded
in a copper block sunk into the floor of the cavi-
ty. Temperature differences and, by extrapola-
tion, the origin of t could be determined with a
precision of +2@10 ''K, suitable for the medium
resolution for which the experiment was intended.

represents the data well for t & 0.08'K, the expo-
nent being determined with a nominal uncertainty
of +0.005. In spite of this agreement, however,
(1) is almost certainly not the correct asymptot-
ic form.

The second-sound velocity was determined by
observing the resonant frequency of a rectangu-
lar (3 x4 x4 cm) cavity made of lavite and Per-
spex. The cavity is the same one, slightly mod-
ified, as described elsewhere. ' Absolute veloc-
ities could be determined with an estimated er-
ror of 2%, it being assumed that no systematic
error, such as temperature-dependent end effect,
was involved in the conversion from frequency to
velocity.

The temperature of the helium was measured
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FIG. 1. Measured values of U2 (triangles, right
scale) shown as a function of Ty—T on logarithmic
scales. Also shown (full circles, left scale) are val-
ues of ps/p measured by Tyson and Douglass, Ref. 5.
The straight lines represent the simple power expres-
sions (1) and (3) in the text.
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U '=(p ip )»'/C,
th s n p' (2)

where p~ and p„=p-p~ are the superfluid and
normal fluid densities, S and Cp the entropy and
constant-pressure heat capacity per unit mass,
respectively. Away from the p point, where the
coupling term can be neglected, the velocity is
given by the more familiar expression obtained
from (2) by replacing Cp with C y, the constant-
volume heat capacity. Actually (2) can be proven
accurate to at least a part in ].0' at any tempera-
ture; when the coupling is small and the expres-
sion should contain C& the latter has, in any
case, the same value as Cp.

The dependence of ps/p on temperature near
T& has been measured by Clow and Reppy4 and

by Tyson and Douglass. ' The results of the lat-
ter have been reproduced in Fig. 1. They find
for t&0.06 K

Absolute temperatures were determined within
+1.5 x10 4 by calibration against the helium va-
por pressure. The second sound was generated
and detected by means of carbon films on oppo-
site sides of the cavity.

Apart from its intrinsic significance as an em-
pirical property of liquid helium, the velocity of
second sound is of particular interest since it is
related by a precise phenomenological expres-
sion to a number of equilibrium properties, all
of which have been measured close to T&. We
thus have, probably for the first time, the oppor-
tunity for an accurate comparison of the apparent
asymptotic behavior, near a cooperative transi-
tion, of independently measured but theoretical-
ly equated quantities.

Near the p transition the usual equations of mo-
tion' of first and second sound become coupled
by a term involving the diverging thermal expan-
sion coefficient. The expression' for velocity
Uth of the second-sound branch can be shown to
become, near T~,

entropy. In particular,

S =S(T ) =1.54+0.04 J/g deg. (5)

where, for convenience in the analysis below,
the coefficient has been multiplied by a factor
1.07. This factor is to normalize the various ex-
perimental results and is within the estimated
12% for the combined uncertainty in the absolute
values of U, ' (4%) and the factors contributing in
the theoretical expression (8%).

Examining first the empirical validity of (2) as
an expression for U, ', we find that the measured
quantities are in satisfactory agreement not only
in absolute value —a test that can only be made
with a precision of 12% (the actual absolute val-
ues obtained differ by 7%, accounting for the fac-
tor 1.07 above) —but also, and more accurately,
in temperature dependence at all temperatures.
Further from the p point, satisfactory agree-
ment with theory had already been de..aonstrated
eight years ago by the results of PesK.av. ' Fig-
ure 2 shows a deviation plot9 of Uth' (multiplied
by the constant factor 1.07, as above) expressed
as its percentage deviation from the function
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Inserting these results in (2) we find the asymp-
totic form

U '=6.06&&10't'"/(lnt '+3.50) (m/sec)', (6)

p /p =1.43t
S

(3)
I I I IIIII I I I I IIIII I I I I II II

=1.30(lnt '+3.50) J/g deg. (4)

These results, together with others' further
away from T~, can be integrated to obtain the

with g = 0.666*0.006, which we take as —,
' . The

specific-heat measurements of Buckingham,
Fairbank, and Kellers' can be represented (for
t & 0.03 deg) by
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FIG. 2. Deviation plot of measured values of U2 and

various functions discussed in the text. The squares
represent the same data as the triangles in Fig. 1.
The value of each quantity at a temperature difference
t =Ty—T is expressed as its percentage deviation from
U 2 [Eq. (6) in text] evaluated at the same t. The func-
tions Up, Uth, and U~ are defined in the text, Eqs.
(1), (2), and (7), respectively.
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U ', defined by (6). We see that for the whole
temperature range it agrees within the experi-
mental error with our measurements, similarly
expressed as their percentage deviation from
U '. We conclude that Eg. (2) as an expression
for U,

' is fully supported by the experimental re-
sults, and henceforth we assume it to be exact.
If this is so, it is clear that at least one of the
empirical asymptotic expressions (1), (3), and

(4) must be grossly in error, not as a numerical
statement, but as a statement of an actual func-
tional form.

The broken line in Fig. 2 represents the em-
pirical expression U~', Eg. (1). As it was chos-
en to do, it represents the observations well for
t & 0.08'K. In fact it agrees with the measure-
ments for nearly ten times further from T& than
the asymptotic form U ' itself, which is only
within experimental error for t &0.01'K. Fur-
thermore, even this range of agreement with
U ' is due to a certain numerical "accident. "
According to (3) and (4), Uth' can be represented
for t&0.03 deg by

U 'x(TS'/T S ') x(p/p ).

It so happens that the two factors in parentheses
cancel each other to within 1% over a range of t
in which either factor alone has changed by near-
ly 10%%uo. This is illustrated in Fig. 2 by the curve
Ua' which represents U ' multiplied by the first
factor alone, i.e.,

U '=U 'xTS'/T S '
a A.

This function of course still has the same asymp-
totic form as Uth'.

Concerning the actual functional forms, it is
clear that if (3) and (4) correctly describe ps/p
and C~, then the asymptotic form of U,' is given
by U ', that is U22-t"s/int '. This results, as
in the case of ps/p, in a "critical exponent" of $.
This is far outside the uncertainty of the appar-
ent empirical exponent 0.772+ 0.005. It is clear,
however, from Fig. 1 that a simple power de-
scribes the measurements of U, ' just as well as
it does p /p. Thus the experimental evidence,
by itself, cannot rule out quite different exponent

values. For example, even retaining the loga-
rithmic form for Cp, the results permit ps/p
-(tint ')'" and U,'-(t lnt ')'", giving exponent
values of &. Theoretical evidence can of course
restrict the possibilities considerably. Thus Jo-
sephson" has shown that if one accepts certain
results of scaling arguments, p s/p-t
and therefore U, —t' ~)/, where C - t~.&1+& 3

Still assuming Cp-lnt ', one might then have

p /p (P in/ ~) ~~s and U 2 (t/]n$ ~)2~~.

There is no novelty in the remark that the
asymptotic form of a function may be an extreme-
ly bad approximation. Its significance, however,
is vividly emphasized by the present example.
While one may hope that this is a particularly un-
fortunate case, it nevertheless serves as a warn-
ing against the too-literal acceptance of empiri-
cally determined asymptotic forms.
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