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MEASUREMENT OF DYNAMIC BEHAVIOR OF THE THERMOMAGNETIC GAS TORQUE EFFECT

George W. Smith and Gifford G. Scott
Research Laboratories, General Motors Corporation, %arren, Michigan

(Received 2 May 1968)

Experiments in which a modulating magnetic field has been superimposed on the
steady magnetic field necessary to observe the thermomagnetic gas torque effect have
yielded a twofold behavior. For magnetic fields below that for maximum torque, a fre-
quency-dependent torque reduction 6+ is observed. For magnetic fields equal to or
somewhat greater than that for maximum torque, a second effect is superimposed on
the first: an absorptionlike peak which occurs at frequencies proportional to the magnet-
ic field strength.

duction in torque -~/N vs v for P =0.066 Torr
and three values of h~. It is apparent that the
effect increases rapidly with h~. The cutoff oc-
curs in the range 20-400 kHz. The average mo-
lecular collison frequency at this pressure (and
T=300'K) is about 434 kHz. We might expect the
effect to go as' some correlation-function trans-
form, (1+4@sec'v') ', which in our exPeriment
would be proportional to the number of molecules
having undergone a collision within a time I/v.
In Fig. 1, such a correlation function is plotted
and shows good agreement with experiments.

Results with II=IJp for NO and 02 are shown in
Fig. 2. Here the torque defect -4A'is normal-
ized to unity at low v for a number of pressures.
With h~ = IJp, the low-frequency defect is about
20%%uo for NO and about 14%%uo for Os. A plot of the
cutoff frequencies vcut [where EN(~cut) -=—,&N(0)]
vs P is given in the inset. The straight-line
pressure dependence is clearly that of a colli-
sion-dominated process. If we w e ~cut c n
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FIG. 1. Fractional torque defect -AN/N vs v for NO
gas at 0.066 Torr and H= 0.55 H0. Curves 1, 2, and 3
are for h~ =3H/2, H, and H/2, respectively. The
dashed curve is a normalized plot of (1+4~ y~ v )

Scott, Sturner, and Williamson'~' have found a
thermomagnetic torque N in polyatomic gases.
The phenomenon is related to the Senftleben ef-
fects, and theories have been developed. '& The
torque is pressure dependent, with maximum ef-
fect at around 0.050 Torr, independent of the
gas. ' Furthermore, N passes through a maxi-
mum at a magnetic field IIp which is characteris-
tic of the gas and depends linearly on pressure, '
with a nonzero intercept at zero pressure
hence, Ho = b(P+a). This equation is qualitative-
ly derivable from the Gorter-Zernike-Van Lier
molecular precession model' &' with the inclusion
of wall-collision effects. ' The constants b and a
depend on the molecular gg value and collision
cross section.

In an effort to understand better the molecular
dynamics of the gas torque, we have performed
experiments in which a large modulating field
A~ cos2wvt is superimposed collinearly with the
steady field II necessary to observe the torque
(hm =P). By thus modulating the molecular pre-
cession frequency, we hoped to perturb the ob-
served torque. We expected a reduction ~N in
torque for v & ecol], the molecular collision fre-
quency, since the average torque over a modula-
tion cycle would usually be less than or equal to
that with h~ =0. However, for v & vcoll the

-aN
torque would return to its value for h~ =0, since
it would be unable to follow the field changes. Al-
though in these experiments a metal torsion pen-
dulum was used, a number of independent tests
showed that eddy current effects were small.

We have performed experiments on NO and 02,
both of which at low P have low H, values (and
hence require only small h~). Both gases were
studied with II=IIp and h~ =Irp. We also studied
NO at H zHp and at various field values greater
than Bp.

The results for NO at H=2IIp were as expected;
shown in Fig. 1 are curves of the fractional re-
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FIG. 2. Normalized plots of -&N vs v for NO and 02
for H=Hp at different P. In these experiments h~ =H0.
Inset: p~&t vs P for NO and 02.

FIG. 3. &N/N vs v for NO at field values above ~0.
Values of H, P, h, aud ~0 for the curves: (].) 0.53
Oe, 0.015 Torr, 1.03 Oe, 0.34 Oe; (2) 1.0, 0.025, 1.0,
0.46; (3) 2.0, 0.065, 3.0, 1.0; {4) 2.0, 0.065, 2.0, 1.0;
(5) 2.0, 0.065, 1.0, 1.0; (6} 0.86, 0.010, 1.63, 0.28.
Inset shows plot of Pp vs H.

x(P+a), the constant a for NO and 0, turns out to
be about the same as that found from the pres-
sure dependence of 0,. The frequency intercept
is about equal to the average wall-collision fre-
quency. Although the shape of the curves of Fig.
2 is qualitatively like that of Fig. 1, they cannot
be fitted by (1+4m'Tc'v') ', possibly because of
the fact that two effects are contributing here.
This view is supported by higher field experi-
ments described next. It is interesting to note
that the high-frequency effect for some 0, curves
is negative, indicating a larger torque with high-
frequency modulation than without.

Figure 3 shows the frequency dependence of the
fractional defect -AN/N for NO gas at four mag-
netic fields H&IJO. Two effects are evident: a
cutoff curve at low v and an absorption curve at
higher v. Although the shape and height of the ab-
sorption curve depend on P and h~, its frequen-
cy position v, does not. The h~ independence is
evident from the three highest-frequency peaks
with IJ= 2.0 Oe but different h~ values. It is in-
teresting to note that as h~-0, the low-frequen-
cy cutoff curves vanish. In the inset of Fig. 3 is
plotted the field dependence of vo as determined
from several curves like those of the figure.

The straight-line fit seems independent of P and
yields a g& value of about 110, in terms of the
nuclear magneton —roughly twice that measured
for NO ('ll», ) by Ramsey. " As yet we have no
clear understanding of the absorption effect, al-
though we do associate it with molecular preces-
sion. Perhaps the factor of two can be associat-
ed with a double quantum effect involving two col-
liding molecules, or perhaps it is a consequence
of nonlinearity of the magnetothermal effect. "
In the latter event we would expect to see peaks
at higher multiples of the Larmor precession fre-
quency, which we evidently do not see.

As II is decreased through H, toward zero, the
intensity of the absorption curve decreases.
However, even at IJ= H, we expect the absorption
effect to contribute; this probably accounts for
the deviation of the curve shapes of Fig. 2 from
those of Fig. 1. Although we do not yet fully un-
derstand these dynamic experiments, it seems
evident that they are quite sensitive to both mo-
lecular collision and precession. %e plan fur-
ther experiments in the belief that they will shed
light on the magnetothermal gas torque.

Finally, we should mention that we have also
made measurements with transverse modulating
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fields. Although ape did observe results similar
to those of Fig. 1, experimental difficulties
forced us to devote most of our efforts to the lon-
gitudinal mode.

Note added in proof. -Borman, Gorelik, Niko-
laev, and Sinitsyn" have measured the effect of
an alternating magnetic field on the thermal con-
ductivity of oxygen and have observed an effect
related to molecular precession.
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VELOCITY OF SECOND SOUND NEAR THE y POINT OF HELIUM
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We report measurements of the velocity of second sound near Ty. It is found to van-
ish with the 0.386 power of Tg —T. The results confirm the theoretical expression and

permit a direct asymptotic comparison for the first time of independent but theoretical-
ly equal quantities.

We have measured the velocity of second sound,
U„as a function of temperature near the g tran-
sition of helium. The results, which extend from
2 @10 ' to 4 x10 ' deg below T~, are shown in
Fig. 1, which displays on a log-log plot the
square of the measured velocity as a function of
the temperature difference t = T~-T. The straigh1
line given by
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with a carbon resistance thermometer embedded
in a copper block sunk into the floor of the cavi-
ty. Temperature differences and, by extrapola-
tion, the origin of t could be determined with a
precision of +2@10 ''K, suitable for the medium
resolution for which the experiment was intended.

represents the data well for t & 0.08'K, the expo-
nent being determined with a nominal uncertainty
of +0.005. In spite of this agreement, however,
(1) is almost certainly not the correct asymptot-
ic form.

The second-sound velocity was determined by
observing the resonant frequency of a rectangu-
lar (3 x4 x4 cm) cavity made of lavite and Per-
spex. The cavity is the same one, slightly mod-
ified, as described elsewhere. ' Absolute veloc-
ities could be determined with an estimated er-
ror of 2%, it being assumed that no systematic
error, such as temperature-dependent end effect,
was involved in the conversion from frequency to
velocity.

The temperature of the helium was measured
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FIG. 1. Measured values of U2 (triangles, right
scale) shown as a function of Ty—T on logarithmic
scales. Also shown (full circles, left scale) are val-
ues of ps/p measured by Tyson and Douglass, Ref. 5.
The straight lines represent the simple power expres-
sions (1) and (3) in the text.
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