
VOLUME 20, NUMBER 25 PHYSICAL RK VIEW LETTERS 17 JvNz 1968

USE OF BLOCKING IN CRYSTALS TO STUDY THE LIFETIME
FOR FISSION OF '3'U BY 12-MeV PROTONS
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(Received 18 April 1968)

Plastic detectors were used to observe angular distributions of fission fragments

emerging from a UO2 single crystal. In fission induced by thermal neutrons and by 12-
MeV protons, characteristic blocking patterns were observed, showing strong attenua-

tions along major crystal axes. This shows that fission occurred while the nuclei were

within. 0,1 A of a lattice site and indicates that the total lifetime in 12-MeV proton fis-
sion is less than 2 x10 ~7 sec.

There have been few attempts to measure the
lifetime of the compound nucleus in fission. '
Upper limits of &6X10 ' sec and &4&10 "sec
for the reaction of fission spectrum neutrons
with 3 U and "'Np, respectively, ~ are the best
estimates to date. At excitation to levels near
threshold, estimates from level widths give a
Tf of -10 "sec.'

The present experiment is designed to mea-
sure the lifetime of compound nuclei formed in
12-MeV proton-induced fission of 3 U by making
use of the "blocking" phenomenon that occurs in

single crystals of UO, and by using plastic detec-
tars sensitive to fission fragments. '

Briefly, blocking occurs when a charged parti-
cle originating on a lattice site is prohibited
from leaving the crystal exactly along the crys-
tal axes and, to a lesser extent, a,long the crys-
tal planes. The angular distribution of such par-
ticles shows a characteristic pattern of "dips"
(attenuations) corresponding to the major crys-
tal axes and planes. On the other hand, if the
charged particle originates at a point removed
from the lattice site by a distance greater than
the Thomas-Fermi screening distance (=0.1 A),
the blocking will be eliminated and no character-
istic pattern should be detected. This phenome-
non has been observed previously for o.'parti-
cles, 7 protons, ' and positrons, ' but not for
fission fragments. The theory of blocking and of
the related phenomenon of channeling has been
developed by Lindhard. The possibility of mea-
suring extremely short lifetimes in nuclear reac-
tions by making use of the "blocking" effect in

single crystals has been suggested by Tulinov, '3

Gemmell and Holland, "and Dabbs. '
We first wished to confirm that the blocking

pattern for fission fragments could be observed
under experimental conditions involving a thick
source and possible interference from radiation

damage to the crystal by the fission fragments.
To do this it was necessary to measure angular

distributions in a situation where the fissions. g
nucleus is on a lattice site. This is the case for
thermal-neutron-induced fission (of 2~5U) in a
single crystal. A single crystal of natura, l UQ,
was irradiated in the thermal neutron beam
from the +1 hole in the NRU reactor. A Lexan
plastic detector"~'6 was placed, in vacuum, at a
distance of 50 cm from the crystal, so as to de-
tect fragments emerging along and around the
(111)axis. A mask over the crystal with a 1.0-
mm-diam aperture defined the angular resolu-
tion at the detector as 0.1'.

After etching, the tracks in unit areas of 1
mrn' were counted and a scan made in a random
direction passing through the (111)axis. A sec-
ond scan was made in a direction perpendicular
to the first, and the two scans averaged to give
the results shown in Fig. l. A dip characteristic
of blocking is seen at the axis, having an attenua-
tion of about a factor of 5. The full width at half-
maximum of the dip is =0.9 which is of the ex-
pected magnitude. '~

To carry out observations where the fissioning
nucleus is recoiling, fission was induced (in
2sBU) by 12-MeV protons from the High Voltage
Engineering Corporation Model MP tandem Van

de Graaff accelerator. The crystal was aligned
using Rutherford scattering techniques and trans-
ferred to a goniometer box on the accelerator.
It was tilted until a (110) axis was 2' away from
the proton beam direction; and then rotated 2

away from the plane. This ensures that the beam
does not enter along either a major axis or a ma-
jor plane. A Lexan detector was placed at 90 to
the beam, 50 cm away, to observe fission frag-
ments emerging around one of the other (110) ax-
es. An aperture of 1 mm defined the beam. The
crystal was irradiated with -7 nA of 12-MeV pro-
tons for -1 h.

A track count of the detector again revealed
the characteristic blocking pattern. In this case,
since the statistics were better, only a single
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MUON DECAY DEEP UNDERGROUND*
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A measurement of delayed coincidences characteristic of muon decay has been made
at a depth of 1440-hg/cm standard rock with a 200-liter liquid scintillation detector.
These results are consistent with the decay rate predicted from the depth-intensity
curve for the penetrating component of the cosmic rays, providing independent evidence
that this component is energetic muons.

It is generally accepted that cosmic rays ob-
served deep underground are muons plus an ac-
companying soft secondary component. The iden-
tification is based mainly on two types of infor-
mation: the interactions of the observed parti-
cles, ' and the consistency between the sea-level
muon spectrum and the depth-intensity curve. s

Since accurate measurement of the sea-level
spectrum is available to only a few hundred

GeV, ' this form of evidence is of limited useful-
ness at higher energies.

In this Letter we point out an additional and
somewhat more direct test of the muon as the
penetrating component: an observation of muon

decay underground as compared with the rate ex-
pected from the depth-intensity curve. Such an
observation is most persuasive because the de-
cay of the muon with a 2.21-p, sec mean life into
an electron having a known energy spectrum
uniquely characterizes the particle. An experi-
ment of this type, employing a liquid scintillation

detector at a depth of 1440-hg/cm' standard rock,
is in the final stages of preparation. The aver-
age energy loss for a cosmic ray arriving at this
detector from the vertical direction will be about
400 GeV. ' Particles arriving at other zenith an-
gles will have correspondingly higher minimum
energies.

Preliminary information is available from an
experiment done, in the same location, in anoth-
er context. ' The relevant portion of that experi-
mental system was a 200-liter liquid scintillator.
Particles depositing more than 10 MeV in the de-
tector triggered the electronics, and oscillo-
scope traces of the pulses were photographed.
Delayed coincidences in the interval 1.5-5.0 p, sec
were observable, corresponding to an efficiency
of 40% for decays with the muon mean life.
Losses due to edge effects were about 8'%.

In 1942 h of operation, 13 events were observed
with the appropriate decay signature. The time
interval and energy distributions shown in Table
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