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ABSENCE OF MOTT TRANSITION IN AN EXACT SOLUTION
OF THE SHORT-RANGE, ONE-BAND MODEL IN ONE DIMENSION
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The short-range, one-band model for electron correlations in a narrow energy band
is solved exactly in the one-dimensional case. The ground-state energy, wave function,
and the chemical potentials are obtained, and it is found that the ground state exhibits
no conductor-insulator transition as the correlation strength is increased.

The correlation effect of electrons in a partial-
ly filled energy band has been a subject of inter-
est for many years. ' A realistic model which
takes this correlation into consideration, and
which is hopefully amenable to mathematical
treatment, is the short-range, one-band model
considered by a number of authors. ' ' In this
model, one pictures the electrons in a narrow
energy band hopping between the Wannier states
of neighboring lattice sites, with a repulsive in-
teraction energy between two electrons of oppo-
site spins occupying the same lattice site. The
central problems of interest have been (a) the
possible existence of a "Mott transition" between
conducting and insulating states as the strength
of the interaction is increased, and (b) the mag-
netic nature (ferromagnetic or antiferromagnet-
ic) of the ground state. While previous treat-
ments of this model have always been approxi-
mate, we have succeeded in solving the model
exactly in the one-dimensional case. Our exact
result shows that the Mott transition does occur
in the ground state of the one-dimensional model.
Furthermore, a general theorem of Lieb and
Mattis' on one-dimensional systems tells us that
the ground state is necessarily antiferromagnetic.

It may be argued that the absence of a Mott
transition in one dimension is irrelevant for the
study of real three-dimensional systems because
of the folkloristic dictum that there are never
any phase transitions in one dimension with
short-range interactions. In actual fact, the dic-
tum is only true for nonzero temperature; the
ground state is another matter. Generally speak-
ing, when a Hamiltonian is considered to be a
function of some parameter, U (which in our
case is the electron-electron repulsion), singu-
larities with respect to U usually do appear in
the ground-state wave function, energy, polariz-
ability, etc. , even in one dimension. A good ex-
ample of this is the one-dimensional Heisenberg
chain (to which the present model is very close)
which, when considered as a function of the an-
isotropy parameter, does have two singularities

+E(N -M, N -M', U)a ' a

=M U+ E (M, N -M ', —U)

=M'U+ E (N —M, M'; -U). (2)

Without loss of generality, therefore, we may
take

S —= 2(N—2M) ~0 and ¹N
8 a

(less than half-filled band).

in the ground state and, presumably, no singu-
larities for nonzero temperatures. '~ '

Consider a crystal (one-, two-, or three-di-
mensional) of N~ lattice sites with a total of N
~2%a electrons. We suppose that the electrons
can hop between the Wannier states of neighbor-
ing lattice sites, and that each site is capable of
accommodating two electrons of opposite spins,
with an interaction energy U &0. The Hamilton-
ian to consider is then' '

H =T p gc. c. + Ugc.
&

c. c.
&
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where czar), c;o are, respectively, the creation
and annihilation operators for an electron of
spin 0 in the Wannier state at the ith lattice site,
and the sum

~ ~

&i7&

is restricted to nearest-neighbor sites.
First of all, it can be shown that the energy

spectrum of 0 is invariant under the replacement
of T by -T.' Therefore, for simplicity we shall
take, in appropriate units, T =-1. Since the
numbers Nl of down-spin electrons and M' of up-
spin electrons are good quantum numbers (M+M'
=N), we may designate the ground-state energy
of H by E(M,M', U). It is then easy to derive the
following relations Iby considering holes instead
of particles in (I)]:

E(M, M't U) = -(N -M-M')U
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It can similarly be shown that the maximum en-
ergy G(M, M'; U) is related to the ground-state
energy by

G(M, M', U) =M'U E(—N M,—M', U).

Therefore, a knowledge of the ground-state ener-
gies also tells us about the maximum energies.

For a one-dimensional system, the lattice
sites can be numbered consecutively from 1 to
N~. Letf(xl x2 ''~xM M+1 ''' xN) repre-
sent the amplitude in g for which the down spins
are at the sites x1, ~ ~ ~, x~, and the up spins at
xM+ 1, ~ ~ ~, xN. Then the eigenvalue equation Kg
=Et/i leads to

N
X +8 ''' X

2=1 S=+ 1

be chosen to satisfy the relations

ab

nm

—2iU
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sink -sink + 2iU

n m

sink -sink
n m ab+ ~ 1-sink -sink + &iU

n m

where, for j =1+1,

Qi = a = Q'j, Qj = b = Q'i,

Qk = Q'k for all k c i,j;

[Q, P) = I' [Q,P')

In (7), I'~ is an operator defined by
ab-

(8)

+U Q b(x.—x.)f(x .x )j
Pi =m =P'j, I'j =n=P'i,

I'k=P'k for all kci, j;
=Ef(x x )1

(3)

which is antisymrnetric in the first M and the
last N-M variables.

In each region defined by 1 ~xQI ~xQ2 ~ ~ ~ xQN
~N, we make the following Ansatz for f:

N
=Q[Q, P]exp(i Q k .x .),
I

where P = (Pl, P2, ~ ~ ~, PN) and Q = (Ql, Q2, ~ ~ ~,

QN) are two permutations of the numbers (1,2,
~ ~ ~, N), {ki,k2, ~ ~ kN) is a set of N unequal
real numbers, and [Q, P] is a, set of Nt XN' coef-
ficients to be determined.

The coefficients [Q, P] are not all independent.
The condition of single valuedness (or continuity)
off and the requirement that (5) be a solution of
(3) lead to the following:

N
E=-2Q cosk.

j=l
and, for all Q and P, the coefficients [Q, P) must

where it is understood that we require a solution
of the form

f(x,x, ~ ~ ~, x Ix,x,~,x )

and P is an operator which exchanges Qi=a
a.nd Qj=b

It is fortunate that the Ansatz (5) and the alge-
braic consistency conditions (7) and (8) have, in
essence, appeared before in the study of the one-
dimensional delta-function gas for particles in a
continuum. The first solution of that problem
was for bosons (symmetric f) by Lich and Lini-
ger" but this case is not relevant here, besides
which the consistency conditions there are trivial
to solve. The two-component fermion case was
solved by McGuire" for N =1, but again (7) is
trivial because of translational invariance. The
next development was the solution of the case M
=2 by Flicker and Lieb' by an inelegant algebra-
ic method which could not be easily generalized.
However, the case M =2 is the simplest one
which displays the full difficulty of the problem.
Shortly thereafter, Gaudin'~ published the solu-
tion of the general-M problem. The method of
his brilliant solution did not appear for some
time and is now available as his thesis. ' In the
meantime, Yang" also discovered the method of
solution (essentially the same as Gaudin s) and
published it with considerable detail. Here, we
have followed Yang's notation with slight modifi-
cation.

The important point is that our Eqs. (7) and (8)
are the same as for the continuum gas except
for the replacement of k by sink in the latter.
This has no effect on the beautiful algebraic anal-
ysis which finally leads to the following condi-
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tions which determine the set {kl,2, ~ ~ ~, kN):

JI//I

N k. =2«. + g e(2 sink. -2A ), j =1,2, ~ ~, N,j
1

j p' (9)

where the A's are a set of real numbers related to the 4's through

N M
—Q 9(2A -2 sink. ) =2' —Q g(A —A ), n =1, 2 M

Q g Q
1

Q P

8(p) —= -2 ta,n (2p/U), —w ~0& v,

(10)

and I& =integers (or half-odd integers) for M = even (or odd), J~ = integers (or half-odd integers) for
M'=odd (or even). An immediate consequence is

(12)

For the ground state, J~ and I& are consecutive integers (or half-odd integers) centered around the
origin and satisfying Q .k. = 0.

In the limit of N- ~, Nz - ~, M —~ with the ratios N/N~, M/N~ kept finite, the real numbers k and
A are distributed continuously between —Q and Q- w and Band B—~~, with density functions p(k) and
o (A), respectively. Equations (9) and (10) then lead to the coupled integral equations for the distribu-
tion function p(k) and v(A):

I B 8Ucr(A)dA2'(k) =1+cosk II (13)

~Q 8Up(k)dk ~B
4Ug(A')dA'

QU'+16(A —sink)' J BU +4(A —A')~' (14)

where Q and B are determined by the conditions

J p(k)dk = N/N,

f B&(A)dA =M/N .

The ground-state energy (6) now becomes

E = -2Ã J p(k) coskdk.

(16)

(17)

o(A) = (2z) ' f sech( —,'(uU)
0

x c os ((dA )Jo ((d )d(d,

p(k) = (2m) '+ z ' cosk

(18)

%e have established the following:
(a) Equations (13)-(16)have a unique solution

which is positive for all allowed B and Q.
(b) M/N is a monotonically increasing function

of & reaching a maximum of ~ at B = ~. This is
the antif erromagnetic case, Sz = 0, and corre-
sponds to the absolute ground state.

(c) N/N~ is a monotonically increasing func-
tion of Q, reaching a maximum of 1 (half-filled
band) at Q = v.

For B = ~ and Q = n, (13)-(16)'can be solved in
closed form by Fourier transforms with the re-

cos(v sink) J,(&u)d~

1+ exp( —,'vU) (19)

E = E(2N, pN; U—)a' ' a'

~ J,(u)J, (&u)da

a J, m[1+ exp( —,&uU)]
' (2o)

where J, and J, are Bessel functions.
To investigate whether the ground state is con-

ducting or insulating, we compute the chemical
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potentials p, + and p as defined in a forthcoming
paper by Mattis

E—(M+ 1,M; U) E(—M, M; U),

p, =—E(M, M; U) E—(M 1—,M; U). (21)

If p, + and p. are equal, the system has the prop-
erty of a conductor. If, on the other hand, we
find p, + & p, , then the system shares the proper-
ty of an insulator. We can compute p, directly
from (9) and (10) by replacing M -M —1 and N
-N—1, while letting all the k's, A' s, and their
distribution functions change slightly. The pro-
cedure is quite similar to the calculation of the
excitation spectrum of the continuum gas." If
N& 2N~, we can compute p, + in the same way and

thereby find that p. += p, for all U. If, however,
N is exactly 2N~, then we must compute p, + by
using the first line of (2) which tells us that

p, = U- p, (half-filled band). (22)

The calculation of p, can be done in closed form
for a half-filled band with the result

J&((d )d(d

~[1+exp(2(uU)]

2 2 2=-4 Q (—1) [(1+—,'n U )'-2nU].
n=1

(23)

Therefore, we conclude that the ground state for
a half-filled band is insulating for any nonzero U,

and conducting for U=O. That is, there is no

Mott transition for nonzero U. This absence of a
Mott transition is also reflected by the fact that
the ground-state energy and the ground-state
wave function are analytic in U on the real axis
(except at the origin).

We have also investigated the excitation spec-
trum E(P) for a given total momentum Q.k. =Pj j
and a given value of S~. Just as in the case of a
continuum gas for which the spectrum can be re-
garded as consisting of several elementary exci-
tations, "~"we find three types of excitations:
(I) a "hole" state in the A distribution, (II) a
"hole" state in the k distribution, and (III) a

It can be established from (22) and (23) that, in-
deed, p, +& p, for U&0, and

lim p. =O.
U-0

"particle" state in the k distribution. While the

S~ =0 spin-wave state may have any of these
three types of spectra, the Sz =1 spin-wave state
is always associated with the type-I spectrum.
The type-I excitation has the lowest energy and

is characterized by a double periodicity similar
to that of an antiferromagnetic chain. ' In the
limit U-0, it goes over to E(P) = I sinP I, while
the type-II and -III spectra have the identical
limiting form E(P) = 12 sin(2P) I. Detailed discus-
sions of these matters will be given elsewhere.
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