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A new criterion is proposed for linearizing many-body equations of motion which is
well defined and is related to a stationary principle. The method is applied to the prob-
lem of correlation in a narrow s band and the results differ considerably from Hub-
bard's treatment of this problem.

One of the advantages of Green's function'~'
and equation-of-motion methods'~~ in statistical
mechanics has been the fact that operators can
be used which are not strictly fermion or boson
operators. For example, the Green's-function
method has been used for spins by Tyablikov'
and others, and for atomic states in narrow en-
ergy bands, by Hubbard. The above freedom
brings with it disadvantages, however, because
the truncation procedures are somewhat arbi-
trary. We propose here a prescription for trun-
cating equations of motion which is well defined
and which is related to a stationary principle.

We discuss the truncation scheme for a gener-
al many-body problem and in terms of the equa-
tion-of-motion method. We shall later apply it
to the narrow s band considered in Hubbard I,'
whose Hamiltonian is7

H=U+n. n. +Qf, .c. +c. ,
i& i& " ij io ja'

where c's are creation and annihilation opera-
tors for Wannier sites, and the notation is as in
Ref. 7. In the equation-of-motion method, we
attempt to construct a creation or annihilation
operator A for a quasiparticle, which satisfies
in some approximation

[A, H] = cd. (2)

Here, if we think of A. as an annihilation opera-
tor, then + is the quasiparticle energy. More
generally, we might attempt to find a basis set
of operators (A~) such that

[A, H]=Q.K,A .. (3)

If we obtain Eq. (3), we can then diagonalize K
to give Eq. (2). Of course, for systems with in-

teractions, Eqs. (2) and (3) are not in general
satisfied by simple operators, so that one must
make approximations. What is usually done is
to replace some operators on the right-hand
side by their expectation values. The simplest
example is the Hartree-Fock approximation, for
which we use only one-fermion operators and for
which in our example we have, using cz~ as the
basis set,

K =t . +U.(n )
sj ij -0

Higher approximations have been worked out
by many authors, and w'e mention especially
Suhl and Werthamer's4 work in which they show
how to include all three-fermion operators in the
set (At) and to truncate expressions with five-
fermion operators. However, in Hubbard's'
work it was shown that the most important cor-
relations in a narrow energy band are those on a
single atomic site, so that he proposed decou-
pling according to particular states of occupancy
of atomic sites rather than according to the num-
ber of fermion operators involved. In particular,
for the case of the narrow s band he singled out
one type of three-fermion operator, n ~c&~. The
result of Hubbard's first calculation was criti-
cized by Harris and Lange, who showed that cer-
tain moments of the spectral function'~' were not
reproduced correctly. This seems to be a re-
sult of the ambiguities in truncating equations of
motion with one but not all three-fermion opera-
tors.

Our proposal is to use the following prescrip-
tion for determining the K; self-consistently.
Let us commute or anticommute, according to
the statistics, both sides of Eq. (3) with another
member of the set and then take either the expec-
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tation value in the ground state, or the thermal
average, of both sides. This gives

([[A., H], A, +] )=E., =+K..([A., A+] ), (5)

That is, if an exacts exists, then the frequency
obeys a stationary condition. The expectation
value involved can be in the exact ground state,
or in any eigenstate of H for which ([A,A+]+) is
finite. Then if we assume that A is given by a
linear combination of the members of our set A&,
with constant coefficients, variation of Eq. (7)
with respect to the coefficients yields an eigen-
value equation whose solutions are just the eigen.
values of Kgj.

Now exact solutions of Eq. (2) do in fact exist,
of the form In) (m j, where n and m are two dif-

where the upper sign is for bosons or an even
number of fermions, and the lower sign is for
an odd number of fermions. Then, to the extent
that the various averages can be calculated, this
gives a well-defined method for determining the

Ki of Eq. (3), provided that the matrix Ni =(Ai,
A&+]+) is nonsingular. The matrices Ei& and N~&

are Hermitian, though Kz& need not be.
It should take only a little thought to convince

oneself that Eq. (5) reduces to the Hartree-Fock
approximation if me keep only single-particle
operators. Also, for any problem for which a
Hartree-like approximation can be used, Eq. (5)
will reproduce the standard result. An example
is the equation-of-motion approach to supercon-
ductivity. ' Furthermore, if we let the set A~
consist of one-particle and three-particle opera-
tors, and further approximate all of the brackets
by the corresponding quantity obtained by requir-
ing momenta to match in pairs, the "second ran-
dom phase approximation" of Suhl and Wertham-
er is reproduced.

The relation to the variational principle is as
follows: Suppose that an operator A exists which
obeys Eq. (2) with &u real. Then we can readily
prove that if we vary A and A+,

58[[A,H], A+] )—~([A,A+] )] =0.

ferent eigenstates of the total Hamiltonian, with
~ given by e~-en. To be definite, let us as-
sume that the expectation value in Eq. (7) is in
the ground state. Then we must have either n or
m, say n, be the ground state, and the energy in-
volved is then the difference in energy between
states A+ (0) and (0). The eigenvalues of H are
mell knomn to be stationary. The difference
from the usual variational result is that we are
varying the operators rather than the wave func-
tions.

While the stationary principle gives some
weight to our arguments, what we mould really
like to prove is that our prescription leads to an
upper bound for the total energy. This we have
not succeeded in doing as yet. However, we feel
that if the variational method gives one a hunting
license for choosing trial wave functions, our
prescription at least gives us poaching rights,
and Eq. (5) gives us in some sense the best equa-
tion-of-motion results for a given choice of qua-
siparticle operators.

Our result is particularly useful when applied
to the calculation of Green's functions. If we use
the notation of Zubarev, ' then from the equation
of motion for the Green's function, '~' along with
Eq. (5), we can construct a whole "brace" of re-
tarded Green's functions:

We can then use standard Green's-function meth-
ods for evaluating the various expectation values
that occur.

As an illustration of the method, let us consid-
er the narrow-band problem of Eq. (1). We take
as a basis set the operators

c- =Q exp(ik'R. )c. ,ko 2 20

d =Q exp(ik R.)n. c. . (8)ko 2 2 -0' 20'

This is the same basis set used in Hubbard I.
We can then evaluate the 2x 2 matrices Ez& and

Ni& for each spin:

( e-+ Hn
k -o

U+e n

(V+ ~-)n
k -g

Hn + ~-n '+n (1-n )W-—0 k -0 —0 -0 k-g

1 n

(10)
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where Ek=Zjtp~exp(ik R&), and where

n (1-n )W = Qt .(c +c, (1—n n-, ))g g kg 00j Og jg Og j gjW

-Pt . exp(ik R.)(n ' (n-, n. )+(c. +c +c. c )+(c. +c. +c c )).oj j g igjo j g Og jo Ocr j-g jg OgO g

Then from Eqs. (5) and (7) we can construct Green's functions, in particular, the one-particle Green's
function

&u-U(1-n )-W-
((c-;c +))=

k (cu-e--U) (&u-W- ) + U(e —W- ) (1-n )k k-g k k-g —g

This result is the same as the result of Hubbard
I except for the appearance of the term Wg . To
interpret this term, let us look at the poles of
the Green's function (or the eigenvalues of Ki&)
in the limit of very large U:

aE -(1-n )e +n W
ko -o k -o k-o' (13)

bE- -U+n e-+(1 n )W-
kg -g k -g k-g

Looking at the lower set of levels, (13), we see
that in addition to the band-narrowing term
which Hubbard obtained, there is a shift of the
center of gravity of the band given by the first
term of Eq. (11). The second term of Eq. (11)
represents an additional band narrowing, and is
smaller than the first. This result is exactly the
same as that obtained by Harris and Lange from
their moment calculation, when we omit terms
which vanish for U- ~. In this connection let us
remark that the one-particle Green's function
for finite U is exactly what results if we assume

two poles on the real axis and fit the relative
weights and positions to the first three moments
of the spectral function, i.e., the imaginary part
of ((ckz,'cko+)). This would indeed seem to be
the best we could do within the limitations of
Hubbard's two-peak approximation.

The result also reduces (for finite or infinite
U) to energies obtained in the author's variation-
al calculation for the case in which the ground
state was ferromagnetic. ' That work was pri-
marily concerned with spin waves, but single-
particle states were also obtained and the pres-
ent calculation generalizes these results to the
case of partial- or no-spin alignment.

As Harris and Lange point out, the band shift
makes it more likely that the ground state of the
system is ferromagnetic. To investigate the pre-
dictions of our method as to the occurrence of
ferromagnetism in this model, we have self-con-
sistently evaluated ng and $V~g by Green's-func-
tion methods. '~ The results for U- ~ give, as-
suming only the lower set to be occupied,

~ =(1-. )E-f(E- ),g -g k kg

n (1-n )W = Q t.n. -p t. . exp-(ik .R.)[n. '(1-n )+n. n. ]/(1-n -n )o o kg joj jg jOj j jo g jg j-g g -g (16)

where f is the Fermi function and where

n. =Q exp(ik R.)f(&- ).jo k j kg

Eqs. (13), (15), and (16) must be solved self-con-
sistently. For the case of nearest-neighbor in-
teractions, this is not difficult once we know the
density of states for the noninteracting case, be-
cause the shape of the bands is not altered by
the interactions. What we do is to vary the un-
perturbed Fermi energies of the two spin bands,
which determines the Fermi surfaces and the

various parameters, until the perturbed Fermi
energies match up. We have carried out the cal-
culation for a simple cubic lattice using Wolfram
and Calloway's' density of states; and we find
regions of n, the number of electrons per site,
for which solutions exist for ny tnt. The mag-
netization is plotted in Fig. 1 versus n. We also
include a plot of the total energy of the system
versus n, as calculated from the one-particle
Green's function. '~'

The existence of magnetic solutions for this
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to Hubbard's improved versions (II and III) of
the theory. The approach should be particularly
helpful in the orbitally degenerate case (II),
where we can put in projection operators for
states of occupancy of the ions. We believe that
the method should have further applications in
statistical mechanics.

The author wishes to thank A. B. Harris, R. V.
Lange, M. Vellini, S. Silverstein, and E. Hart
for valuable discussions on this work.
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FIG. 1. Magnetization (25z)) and total energy per
site plotted against the number of electrons per site.
Units of energy are such that the bandwidth is 6.

model in the infinite-U limit brings this theory
in line with the work of Nagaoka, "who showed
that for the almost-half-filled case the ground
state is ferromagnetic, and with the author' s
previous work on the model. ' In this sense we
have rescued the "Hubbard I" theory. Outside of
the truncation procedure we are, of course,
making all of the other approximations of that
theory, including neglect of spin waves and of
level broadening. We hope to apply the method

P. C. Martin and J. Schwinger, Phys. Rev. 115,
1342 (1959).

2D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) ftrans-
lation: Soviet Phys. —Usp. 3, 320 (1960)J. See this
article for other references.

K. Sawada, K. A. Brueckner,
¹ Fukuda, and

R. Brout, Phys. Rev. 108, 507 (1957).
4H. Suhl and N. B. Werthamer, Phys. Bev. 122, 359

(1961).
S. V. Tyablikov, Ukr. Mat. Zh. ~11 287 (1959).

6J. Hubbard, Proc. Roy. Soc. (London), Ser. A 276,
238 (1963), and 277, 237 (1964), and 281, 401 (1964).
We shall refer to these as Hubbard I, II, and III.

VL. Both, J. Phys. Chem. Solids 28, 1549 (1967),
and J. Appl. Phys. 39, 474 (1968).

A, B. Harris and B. V. Lange, Phys. Rev. 157, 295
(1967).

~D. Pines, The Many-Body Problem (W, A. Benjam-
in, Inc. , New York, 1962), p. 94.

T. Wolfram and J. Calloway, Phys. Rev. 130, 2207
(1963).

~~Y. Nagaoka, Phys. Rev. 147, 392 (1966).

1434


