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FIG. 2. Temperature dependence of Scott effect for
nitrogen gas from 100 to 200'K. The typical error bar
shown is large due to inaccuracies in AT measure-
ments.

elude that the torque is larger for a larger mean
free path. This means that a transverse force
acts on the molecule for a longer time between
collisions in order to give a transverse momen-
tum. It should be pointed out that the lines
through the data points appear to extrapolate
to zero near the liquefaction temperature for
the nitrogen. The dimensions of the apparatus
were such that the mean free path of the N,
gas was small compared to the distance from
the torsion pendulum to the container wall.

The error bar shown in Fig. 2 is rather large
because of inaccuracies in the measurement
of the temperature gradient. Our continuing
effort will be to reduce this error by reducing
the vertical temperature gradient.

The observed torque, now called the Scott
effect, must be caused by a transverse linear
momentum transport and appears to be relat-
ed to the Senftleben effect' which is a change
of heat conductivity by the polyatomic gas in
a magnetic field. Knaap and Beenakker' have
published a phenomenological theory for the
Senftleben effect which shows that there will
be energy and momentum transport perpendic-
ular to the direction of a magnetic field and
perpendicular to the direction of a temperature
gradient in polyatomic gases. Levi and Been-
akker' have applied the theory to the new torque
effect and have shown agreement with the room-
temperature measurements of Scott, Sturner,
and Williamson. They do not discuss the tem-
perature dependence of the observed torque.
It should be an interesting theoretical problem
to calculate from first principles how the lack
of spherical symmetry of N, gas can cause
a weak magnetic field to give rise to a trans-
verse force on the molecule.

*Hesearch supported by The Robert A. Welch Foun-
dation.
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BEHAVIOR OF THE CORRELATION FUNCTION NEAR THE CRITICAL POINT

J. D. Gunton and M. J. Buckingham
Department of Physics, University of Western Australia, Nedlands, Western Australia
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One of the more important aspects of the
problem of cooperative transitions is the re-
lationship between the correlation function and
the thermodynamic properties. It is our main
purpose in this note to point out that there is
a general relation limiting the possible distance
dependence of the correlation function at the
critical point. Let the correlation function
there decrease for large distance r as r ".

In terms of the exponent 5 characterizing the
critical isotherm (H-m~, at T=T ) we show
that there is a number n =2d/(5+1) for a sys-
tem in d-dimensional space such that n ~ n, .
Among other consequences, this has the re-
sult that in three dimensions the Ornstein-
Zernike theory result (n =d —2) at the critical
point cannot be correct unless 5 ~5 and thus
could not apply to a system possessing the "clas-
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In the limit, as R becomes infinite (letting the
volume of the larger system tend to infinity
first), the right-hand side of (1) is equal to
the isothermal susceptibility y = (sm/8FI)T.
Noting that C(r, t, m) is non-negative, and ig-
noring numerical factors, we can write

R ((m-m) ) = f C(r, t, m)dr~ X(t, m). (2)

At the critical temperature, therefore,

R ((m-m) ) &q(O, m)=md 2 -(5—1)

Introducing gR as the fluctuation at the criti-
cal point, (1) gives

2- -2
-=&(m-m) ) 0 0=R

n

7

We now consider the fluctuations in a thermo-
dynamic state for which the mean magnetiza-
tion (for the total system, of course) differs
from. zero by a small amount proportional to

oR itself (still at t=0), say m =ED'R with E

«1, but independent of R. %e note that the

(4)

sical" or van der Waals thermodynamic behavior.
Our results' are valid for the order-param-

eter-order -parameter correlation function
for any system, including the gas-liquid crit-
ical point and the Bose transition of a quantum
system, but for simplicity we use language
appropriate to the ferromagnetic Curie tran-
sition. In this case the order parameter is
the mean magnetization re per particle, and
the conjugate intensive parameter the magnet-
ic field H. In the neighborhood of the critical
point the deviations of the value of the dynam-
ical variable rye from its mean value yn are
correlated over large distances. They can
be described by the correlation function C(r, t, m)
[where T = (1+t)Tc and Tc is the critical tem-
perature], whose second moment is the square
of a correlation length R =R (t, m). This cor-
relation length diverges at the critical point
like t-~ for f-+0 [or (—t) " for t--0] atH
=0, and like P or m ~ at t=0. At the crit-
ical point, C (r, 0, 0) decreases with ~ asymp-
totically like y n. The integral of the corre-
lation function over a large but finite part (of
linear dimension R) of a very large system
is just the mean-square fluctuation of Q in
this part. Expressing this per particle, we
have

((m-m) ) f dr= f C(r, t, m)dr.
R R R

fluctuation in region R can change by at most
a correspondingly small amount, i.e.,

((m —m)') =A v ',
R;t=0, m =no e R '

where~ A& is a number remaining near unity
for small e. From Eqs. (3) and (5) we now

obtain the inequality

R (z - (e(x„)
-(5-1)

(5)

where the first term is the thermodynamic
value and the second, with a&0, represents
a finite-size contribution. It is easy to veri-
fy that, in the limit R-~, the second term
does not affect the distribution of fluctuations
if b&5+1. If, however, b&5+1, that term
dominates. From a calculation of the mean-
square fluctuations and the use of Eq. (4) it
follows that in the first case n =n, but in the

latter n&n. Thus the presence of the finite-
size term can reduce but not increase the size
of the fluctuations. It is apparent from this
point of view that one would normally expect
the equality n =n (as in the case for the two-
dimensional Ising model if 5 equals the expect-
ed' value 15, since n = 4). However, the equal-
ity cannot be true in general since the ideal
Bose gas provides a counter example'. For
d ~4, n=n, but for d&4, n&n. This latter sit-
uation is associated with a "sticking" of the

thermodynamic exponents at their classical
values for d & 4 and in this sense is not "nor-
mal": The classical values arise from terms
in the free energy possessing a Taylor expan-
sion, the remaining singular part contributing

which with the use of (4) leads, as R —~, to
the desired result

n ~2d/(5+1) =n

A nonrigorous, but more physical, way of
considering the origin of the inequality given
by Eq. (6) is to note that the probability for
the occurrence of a fluctuation m in the mag-
netization in region R is proportional to exp( —bF/
kT), where bE =bF(R; Tc, m) is the extra free
energy required by the constraint that the mag-
netization in R is yn. We know that as R tends
to infinity, AE tends to the limiting value for
the infinite system, i.e., to Rd~~+ . Suppose
that for finite R one can represent this free
energy as, say,

d 5+1 d Q 1-g~=Rm +(Rm)
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It is then a straightforward matter to show
that the correlation-length exponents satisfy
the inequalities

y ~ v(d —n) ~de(5-I)/(6+ 1);

y' & p'(d —n) ~du'(6-l)/(6+ 1),

1+ 1/6 & (d-n)(6+ I)/(6-1) ~dr,

where g (t, 0) = t y, etc.
The above arguments can also be extended

to the case of the energy-energy correlation
function C@(r, t, m), whose volume integral
ls

(s)

(S)

only to higher derivatives. For d ~ 4 it is the
singular part which dominates, leading to "nor-
mal" behavior and, in fact, the equality. This
example incidentally is also suggestive concern-
ing the origin of other inequalities possibly
occurring in more general systems.

Away from the critical point (i.e., either
It I &0, or hami &0, or both, but It( «1, etc. )
the decay of C(r, t, rn) should be dominated for
large enough r (at fixed t and m) by a conver-
gence factor, exp(-r/Rc), where Rc =Rc(t, m)
is the correlation length. ' Thus

X(t, m) = f C(r, t, m) r= f C(r, t, m)dr.
C

One can now obtain further inequalities govern-
ing the behavior of the correlations by assum-
ing the expected property that at a given x the
correlation function decreases on moving away
from the critical point, i.e., C(r, t, m) ~ C(r, 0, 0).
Then

d-n
y(t, m) ~ f C(r, 0, 0)dr =R

we first note from Eq. (6) that the Ornstein-
Zernike (O.Z. ) theory, ' which predicts n=d —2,
cannot be satisfied for all values of d and g.
For example, for both the O.Z. theory to be
valid and for a system to have the classical
value 5=3 requires d ~ 4. Alternatively, for
the O.Z. theory to be valid in three dimensions
requires 5 ~ 5. That the O.Z. and classical
theories of the critical region are not in gen-
eral mutually consistent is not surprising,
since only the former depends explicitly on
the dimensionality. It is interesting to note
that present numerical evidence' for the three-
dimensional Ising modeL suggests 5 = 5, as
required for the validity of the O.Z. theory
if (6) were obeyed as an equality. The numer-
ical evidence' that n is approximately equal
to 1.06 would, however, require the inequal-
ity. The O.Z. theory also gives' y =2&, thus
satisfying the first equality in (8). If we make
the reasonable supposition that the correlation
lengths in C&(r, t, m) and C(r, t, m) are the same,
then v& =v, and Eq. (10) then gives

0 2 —pGp. (11)

This relation has a bearing on a number of
examples of three-dimensional systems, in-
cluding a result often appearing in the litera-
ture, ' namely that the O.Z. theory and y = 1

result in o. = —,', this corresponds to the equal-
ity in (11). The equality would also give, for
y = ~~ (Heisenberg model), o, = 0, and for y =

4

(Ising model), & =-,'. If three-dimensional sys-
tems do obey these postulates and the thermo-
dynamic equalities, there is only one free pa-
rameter, say y. Thus,

R &(~Z) )„=f C (r, t, m)dr,
Q

35=5, o. =2 —2y, 0=4y

where the right-hand side equals the specific
heat c- 1n the limit as R becomes infinite.

m
One then finds that (in an obvious extension
of the notation)

n & 2d(1-a)/(2 —a),

dv ~~ 2-(x dv ' ~~ 2-g'

dz & a(2 —a)/n, (10)

where c —behaves like t [or (—t) ] andI, for H =0 and t =0, respectively.
To discuss the relevance of the above inequal-

ities to investigations of cooperative transitions,

It is possible to draw other conclusions from
the inequalities, such as the fact that n ~

~ for
the one-dimensional model of Hemmer, Kac,
and Uhlenbeck. ' However, we conclude by
simply noting that the inequalities derived here
do not depend on any assumptions of homoge-
neity either for the thermodynamic functions
or for the correlation function. In fact, it is
known that for the ideal Bose gas the correla-
tion function is homogeneous (as, in most di-
mensions, are the thermodynamic functions)
of the form r "f(r/R ).' Only for d ~ 4 does
the equality in (6) hold, however, as noted
above. Homogeneity is not sufficient to guar-
antee the equalities.
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~Some of these results were presented by M. J. Buck-
ingham at the Seventh Summer Research Institute of
the Australian Mathematical Society, Canberra, Aus-
tralia, January, 1967 (unpublished). Some are also
discussed by J. D. Gunton, thesis, Stanford University,
1966 (unpublished).

This result, which is physically rather obvious,
can be established formally by considering two concen-
tric parts in a very large system. It is easily seen
that, even by considering A~ «1 for the larger part,
this could not also be true for the smaller, resulting
in a contradiction. (The other case A&» 1 would only
reinforce the inequality. ) In the extreme case of a two-
D-function distribution corresponding to two-phase
equilibrium, A~ in (5) is 1-e; for a Gaussian distri-
bution A& = 1.
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In an isotropic distribution of particles undergoing magnetic bremsstrahlung, the par-.
ticles moving at the largest angles to B lose energy the fastest. The resulting pressure
anisotropy can lead to plasma instability. The particle velocities tend secularly to align
with B, slightly enhancing the effect.

A = 2e'B'/3nz'c'. (2)

Commonly, B sinI9 is denoted by Bp, since it
is the component of B perpendicular to v. It
is clear from (I) that for given initial energy
y, the particles with the largest ~ will lose
energy the fastest. If the initial distribution
of particles or the injection spectrum is iso-
tropic in ~, the resulting spectrum will exhib-
it an excess of pressure along B. In the case
of initial injection followed by decay, as would

be appropriate in supernovae and possibly in
catastrophic events in quasistellar obj ects,
the time for development of significant anisot-
ropy is comparable with that for significant

Previous studies'~' of the behavior of distri-
butions of particles undergoing magnetic brems-
strahlung ("synchrotron radiation" ) have con-
centrated on energy spectra, with little regard
to angular distributions. In the ultrarelativis-
tic approximation, the dependence of the non-
dimensionalized energy y=E/mc' of such par-
ticles on time is given by

-dy/dt =Ay' sin'8,

where 6 is the angle between the velocity v
= |)c and the magnetic field B, and where

energy loss. The most useful measure of an-
isotropy is the difference between the pressure
along B,

2, "'d„" d
p'p'f(p, v)P

~~

—
2Ã~ dp, d (3)

and that orthogonal to B,

"d (I I')p'f(p, ) )-
my

where f is the distribution of particles in (x,
p) configuration space, supposed to be spatial-
ly uniform, and p-=cos~. As an example, con-
sider the initial differential energy spectrum

N(E)dE =n(n -1)E E dE, E &E

= 0 otherwise,

where n is chosen greater than 2 to make (3)
and (4) converge, and where n is the number
density. In the present (ultrarelativistic) ap-
proximation, N(E) is easily converted to a mo-
mentum distribution f,(p) normalized to ff,(p)d'p
=n by use of the relation E -Pc. (The symbol
- will denote equality under the ultrarelativis-
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