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A local, central, density-dependent potential is derived from a given two-nucleon ten-
sor force in nuclear matter. Such an effective force can be used in finite-nuclei calcu-
lations in place of the tensor force to determine the gross properties of nuclei.

The role of the tensor force in nuclear matter
is even qualitatively different from that of a cen-
tral force, so far as binding is concerned. Its
contribution to energy does not increase as fast
with increasing density as that for a central
force, as has been shown by the detailed calcula-
tion of Sprung et al.' When doing a Hartree-Fock
(HF) or Thomas-Fermi (TF) calculation for fi-
nite nuclei, generally an effective central inter-
action is used, but it has density dependence in
it coming from two sources: (a) the short-range
repulsive part of the potential and (b) the long-
range tensor potential. In this note, we shall
concentrate on (b) entirely, and give a definite
prescription for constructing a local, central,
density-dependent potential from the long-range
part of the tensor force. Kuo and Brown' have
pointed out that the second-order Born contribu-
tion of the tensor force in nuclei may be approx-
imated by an effective central force in first or-
der, but they did not consider any density depen-
dence in it. Brandow3 suggested that a central,
density-dependent potential could be used in

place of tensor force, while Bethe' proposed em-
pirically an explicit form of this density depen-
dence in the physically interesting region kF =0.9
F ' to 1.5 F '. Bethe showed, by numerical cal-
culation, that the first-order contribution of this
effective force to energy is approximately the
same as the exact second-order contribution of

the tensor potential. However, his approach is
essentially empirical, and no definite prescrip-
tion has till now been given as to how to con-
struct this density-dependent force in a simple
manner. Manning and Volkov' have demonstrat-
ed, by detailed HF calculations, that the density
dependence in the force can have important ef-
fects in the equilibrium properties of finite nu-

clei, while Bethe4 has emphasized its impor-
tance to get the gross properties of nuclei from
TF calculation. In view of this, it is important
to investigate how to construct such a density-de-
pendent central force, given any well-behaved
tensor potential. In this note, we shall do so,
such that the first-order direct contribution of
this central force in nuclear matter will be iden-
tical to the second-order direct tensor contribu-
tion, and the exchange contributions of the two

will also be approximately equal. Applying the
local-density approximation, such a force can
then be taken over to a finite nucleus to perform
HF or TF calculations. As a specific example,
the tensor part of the one-pion-exchange poten-
tial (OPEP) will be taken, and the effective cen-
tral force calculated for it. This will be com-
pared with the form that has been suggested by
Bethe. 4

We shall first ignore the spin-isospin summa-
tions and include these at the erid. Consider
first a nondiagonal matrix element of a purely
central, local potential ve:

~ M

(k, k ~v (r) tk +q, k -gQ= fv (r)e— d r=F(q).

(2)

with

v, (q) = f j,(q )v(rr)r'dr.

Here 0 is the normalization volume. F(q) is only a function of the magnitude of the momentum trans-
fer q. This is a characteristic of a central, local potential. Nondiagonal matrix elements of the sec-
ond-order tensor term would be considered to find out under what approximations these can be re-
duced to the form (1).

Defining the tensor operator S»(r) =3(o ~ r)(o, ~ r)/r'-(o, ~ cr,), the first-order matrix element of vT
=v(r) 12(r) is given by

I, = (k„k I v(r)S»(r) ~ k, +j,k, -@= -(4w/Q) v, (q)S»(j)
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Throughout this paper, j~ stands for the spherical Bessel function of order /. In first-order Born ap-
proximation, vT does not contribute to the binding in nuclear matter, since it vanishes upon angle
averaging.

Now consider a second-order nondiagonal matrix element

I =(k, k lv (Q/e)v lk +q, k -q),

where e is the Rayleigh-Schrodinger propagator, and Q is the Pauli operator ensuring that in the in-
termediate states, only states above the Fermi sphere come in. Here k» k, are understood to be with-
in the Fermi sphere. Then

such that lkl+q' l &kF and Ik2-q'
l &kF. In the above expression, the summation Qqi may be replaced

by 0/(2v)3fd q', and the matrix elements entering the numerator involve expressions given in Eq. (2).
It is clear, however, that I, depends on the initial momenta k„k, of the two particles, and not on just
the vector q, as in Eq. (2). Our approximation involves in averaging k„k, over the Fermi sphere, so
that T, may also take the same form as Eq. (I). It can be shown that

'
~ (k -k + ') ' ' 20k ' 2k

+q' f, fk -q'
f ) jp F

where &(q'/2kF) is a function of the scalar (q'/2kF) only, and has been defined by Euler' and Levinger
et al. With the above approximation, it can be simply shown that I, can be written in the same form
as in Eq. (1):

I~=—Je v (r, k )d r1 gq r 3
eff 'F

with

v (r, k ) = — —, v(r)S (r) J P v (q')j (q'r)q'dq',
F 0 F

(4)

where v, (q ) has been defined in Eq. (2). Thus, starting with a tensor potential v(r)S»(r), its second-
order contribution gives rise to an effective potential

v (r, k ) =-v(r)f(r, k )S '(r),
eff ' F

where

~~" »)=(n* &o» J»» '»~»')'»~»")»'"»'
F o F

is a dimensionless quantity that modifies the radial form of the effective potential form v(r) and also
introduces a density dependence.

Including the spin-isospin sums properly, it will be easy to show that the first-order direct contri-
bution to potential energy of veff(r, kF) is the same as the second-order direct contribution of the ten-
sor potential. To illustrate this, let us take the tensor potential from OPEP:

) I+ +~ , , S (r) =(~ - ) )v(r)S
3 3

T 1 2 pz p r r 12 1 2

where p is the one-pion range and a =-,'g'(mz/m)'. Then the effective potential, with our prescription,
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v (r, k ) = v-(r)f(r, k )(r ~ 7. )2S 2(r).
eff ' F

The second-order direct contribution to potential energy per particle is given by

I)
d

A

2~ 1

,k 4f P(u)[v (2uk )]'udux 12x24,a' Zo~' F .
the factor 12x24 coming from spin-isospin sum, which is equivalent to Tr[f, ~ i,j Tr(S» ). Here, by

Fd, ' we denote the second-order direct term. All the other symbols have been explained before. The
expression (8) checks with Eq. (6) of Dahlblom et al.'

If we now take the effective potential (7), and calculate the first-order direct term, it is given by

g (1)
d
A

k f v(r)f(r, k )r dr x12 x24.

Substituting for f(r, kF) and simplifying, we get a result identical to the right-hand side of (8). The
first-order exchange contribution to potential energy of vef f(r, kF) is given by

(1) k 1 k'i
j (2kr) 1—— +—

3 k'dk v(r)f(r, k )d r x24 x-6,
0 F F

{10)

where k =-,'(k, -k,). To estimate this term roughly, we shall take only the long-range part of vT in (6),
i.e., assume that vT(r) =0 for r &r, and is given by (6) for r ~ r, . Typically, r, —1 F in the Moszkow-
ski-Scott spirit. For such values of r, it is a good approximation to write

f F. 3 k 1 k 2 1 s.j (2kr) 1-— —,k'dk =—k 'j (k r).
0 F F

So we get

s
k ~fj (k r)v(r)f(r, k )r'dr x12 x12.

Since for the physically interesting region of kF and r, between 1 and 1.6 F we are well within the
first zero of j, (i.e., kFr0&v), we can safely write

(1) ]

A 12 n F 0 F 0
k j (k r )fv(r)f(r, k )r'drx12x12.

Comparison with the direct term (9) gives

Thus, for kF =1.4 F ', r, =l F, /ex"'/bd"'&35%;
while if r, =1.6 F, Sex"'/bd"'&18%. The corre-
sponding values, calculated from exact second-
order calculations' (for kF =1.3 F ') are Eex"'/
Ed"'=22% for ro=1 F and Eex"'/Ed~'=10% for
rp=1.6 F.

The quantity v, (q), as defined in Eq. (2), is ex-
pressible analytically for a v(r) of the form de-
fined in (6), with an arbitrary cutoff r, . In Fig.
1, we have plotted f(r, kF) versus r for r, =1 F
and for various values of kF [a certain constant

multiplicative factor of f(r, kF) has been omit-
ted]. It will be seen that this function has a fair-
ly strong r dependence, so that veff(r, kF) cuts
off more sharply than v(r). This r dependence is
roughly the same for the values of kF from 0.9
to 1.5 F ', at least in the important region of r
from 1 to 2 F, beyond which veff(r, kF) is not ap-
preciable. Further, in this region the effective
potential is falling off almost linearly with kF,
which is one of the forms which Bethe' also sug-
gested. These characteristics persisted when

the cutoff rp was changed to 1.4 F. However,
because of the strong r dependence of f(r, kF),
we cannot write the ratio of triplet to singlet po-
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ly while doing a HF calculation. Finally, it may
be mentioned that third-order terms in which the
same two particles are interacting twice via the
tensor force and once via the central force can
similarly be expressed by some effective densi-
ty-dependent central potential, which would add
to the potential (5). It will have a form like
v(r)g(r, kF)SI2'(r), where g(r, kF) is a function
which would modify the r dependence of v(r) and
introduce a density dependence.

To sum up, we have shown how the role of the
tensor force in nuclear matter can be simulated
by a local, central, density-dependent potential.
Such an effective potential should prove useful in
HF calculations of spherical finite nuclei.
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tential in the simple form that Bethe~ expressed.
We are of the opinion that since f(r, kF) involves
only one nurgerical integration for a given form
of tensor force, it should be calculated explicit-

FIG. ].. Variation of f(r, kp) x const defined in Eq. (5)

with r for various values of kF. The values of kF are
indicated on each curve in units of F
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