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~5K. A. Wickersheim, Phys. Rev. 122, 1376 (1961}.
This Hamiltonim. corresponds to the one previously

deduced by P. M. Levy, Phys. Rev. 135, A155 (1964}.
~~As one of the electrons has no orbital moment and

therefore has no preferred set of axes of quantization,
it is not possible to obtain antisymmetric exchange, for
ji =j2, as was done in Eq. (4), by rotating the axes of
quantization.
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Recently the Wolff model' of local-moment for-
mation in dilute alloys has been extensively in-
vestigated'&' at nonzero temperatures. The con-
duction electrons of the host metal are taken to
interact with each other through a zero-range po-
tential e and with the single impurity through a
zero-range potential V which leads to the forma-
tion of a virtual level in the absence of ~~. A
Bethe-Salpeter equation for the triplet vertex
function, in which the kernel is given by the
product of two single-particle propagators, and
the Dyson equation for the propagator, in which
the mass operator is given in terms of the vertex
function, are solved simultaneously. For v great-
er than a critical vq, the vertex function is di-
vergent if zero-order propagators (in v) are
used; in the self-regulating solutions of Suhl'
and Levine and Suhl, ' the broadening of the reso-
nance through the electron-electron interaction
keeps the zero-frequency vertex finite, though
close to a pole. In the approximation solved by
Suhl' the susceptibility was shown to increase
roughly as P= (kT) ', which implies the forma-
tion of a local magnetic moment at the impurity
site. The numerical solution of the exact equa-
tions' found a susceptibility which increased with
P, though not as fast as P, over an appreciable
temperature range and flattened out.to a constant
at low temperatures. This Letter will show that
these results, within the framework of this theo-
ry, imply that the resistivity due to the impurity
exhibits a Kondo-like behavior, i.e. , approxi-
mately -lnT over an appreciable temperature
range. Extrapolations of the numerical results
obtained by Levine and Suhl' show identical be-
havior.

Suhl's equations' can be written in terms of the
band-averaged propagator h(i~) and the vertex
function y(i&a)'.

r(i~) = S(i~)II—S(i~)7

S(ice) = ——gh (iv)h (iv + i cu),
2'U

35
Z(iv) =——gy(iv)h(iv+ iru).

4~iv

y, 8, Z, and h are analytic in the complex fre-
quency plane except for a eut along the real axis
so that on the physical sheet, we have

dv' Imy(&u'+ ie)

t ~d (d 11HA((d ' + iE )h (z)=
(d
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In the temperature range where y=—y(0) (in these
units, the dc susceptibility is y =y[gpgS(0)] jvj is
large, we expect y(v), which is nearly singular
at v = 0, to be much more rapidly varying than
S(~) for sma. ll &u. Therefore, a. fairly good ap-
proximation to y(ru) is obtained by keeping only
the leading terms in the expansion of S about co

=0, giving
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Imy has most of its strength at frequencies on
the order of I, which, for y»l, is small com-
pared with the range of the frequency variations

r= 1

~(1+r)

For y»1, Eq. (4) is already in its asymptotic re-
gion at the limit of its validity, a&-I/f. The ex-
pression for l in terms of Imh(0) is valid at low
enough temperatures such that f'(~) = —8(v),
where f is the Fermi distribution function.

Using Eqs. (3),
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in ImI2. In addition, the contribution of the as-
ymptotic part of Imy is negligible due to the ex-
ponential convergence of Eq. (6). Hence

3 vImh(0) & (i )) (i &)

(7)

6 + Ilm k (0)] ' = Z .,
2

(8)

4 the width of the original virtual level. Equa-
tions (5), (7), and (8) can be solved for Imk (0).

According to the usual multiple-scattering the-
ory for dilute solutions of randomly distributed
impurities, ' the inverse lifetime for an electron
at the Fermi surface is given by the concentra-
tion times ImTkk(0), where Tkk~(&u) is the single-
impurity T matrix for the scattering of an elec-
tron from k to k'. From Eq. (8) of Suhl, ' the T
matrix in the band-averaged model is

V+Z(&u)
1 —[V+Z(~)]&((u) '

where E(e) is the band average of the electron
propagator ignoring all impurity effects. ' After
some algebra, the result for the lifetime is

where t/r(x) is the digamma function. With the ini-
tial resonance at the Fermi surface, ' ko(0+is)
(the band-averaged propagator in the absence of
v) and k(0+i') are pure imaginary and we have

term in brackets in Eq. (7) decreases and there-
fore I Z, l, determined self-consistently, decreas-
es, causing p to increase. When y is constant
and P/y large, the term in brackets in Eq. (7)
equals I/2('- 1/P', so that' I Zz I goes as T' and p
goes to the unitarity limit. Since the tempera-
ture variation of y is spread out over several
decades in P,

' the resistivity increases to the
unitarity limit over several decades and simu-
lates a lnT behavior over a large part of this
range. A numerical solution of Eqs. (5), (7), and
(8), using values of y from Levine and Suhl, is
shown in Fig. 1, where the lnT behavior is quite
clear. The temperature range over which p
equals the unitarity limit coincides exactly with
the range over which y is constant.

Of course, the resistivity can be obtained di-
rectly by analytic continuation, without any of the
assumptions used above. We have extrapolated
to the real axis the values of k((2n+1)vkTi), n=0,
1, 2, - ~ ~, found in the Levine and Suhl solution
to estimate an exact Imk(0). Since we only know
k(z) on the imaginary axis in the upper half plane,
this extrapolation is actually a continuation
through the cut on the real axis into the lower
half plane of the unphysical sheet. Since h has
singularities on the unphysical sheet, ' we used
Pade approximants with poles in the lower half
plane to do the extrapolation. . This should be the
most realistic way of simulating the analytic
structure of the continued I2. The extrapolated

1 1 1—AZ. /6+ (Z./V)2
2 2

v ImF (0) (1-AZ./b. )' i (Z./V)' ' (10)
l.o

0.9

A is the strength of the virtual level. ' ImF(0) is
the lifetime in the absence of electron-electron
interactions and for a resonance at the Fermi
surface represents the unitarity limit for the
lif ctime.

If ~ is slowly varying near the Fermi surface,
the resistivity is proportional to I/7 The (Z./.
V)' terms in Eq. (10) are very small for reason-
able values of V (V/b. = 5-10) and have not been
included in the numerical calculations. For A = 1,
the case treated in previous calculations of the
susceptibility, '& '

unitarity

When p/y is constant, Zt (which is always nega-
tive) and p are constant, with p less than the uni-
tarity limit. When P/y increases with P, the
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FIG. 1. The resistivity, in unitarity-limit units, ver-
sus P calculated in the approximate theory [Eqs. (5),
(7), and (8)]. The parameters used in this solution are
A=1, A=O. ls ~c=0 3 .
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Comparing these results with those for the s-d
exchange Hamiltonian, ' which assumes a hard lo-
cal moment, we see that the resistivity curves
are fairly similar in shape. It is interesting that
Hamann's solution of the s-d exchange model
shows behavior for p and y similar to that shown
here.

We would like to acknowledge many useful dis-
cussions with Professor H. Suhl.
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values of Imh(0) are determined to a few percent
by the h 's with n-4, and were insensitive to the
h's for higher values of n.

The extrapolated results for the resistivity are
shown in Fig. 2. These exhibit the same behav-
ior as a function of temperature as the results
shown in Fig. 1, though they are 10-20% higher
than the resistivity derived from Eq. (7) except
when both are bounded above by the unitarity lim-
it. The worst differences are for small v and P,
where y is not »1. In both cases, the resistivity
reaches the unitarity limit when y becomes inde-
pendent of temperature.

FIG. 2. The resistivity, in unitarity-limit units, ver-
sus P calculated in the exact theory of Levine and Suhl
(Ref. 3). The parameters used in this solution are A
=1, 4=0.1, v&=0.31.

~Work supported by the Air Force Office of Scientific
Research, U. S. Air Force, Grant No. AF-AFOSR-610-
67, and the U. S. Atomic Energy Commission, Con-
tract No. AT(11-1) BEN 10 PROJ 10 MOD 9 Task B.

~P. A. Wolff, Phys. Rev. 124, 1030 (1961).
2H. Suhl, Phys. Rev. Letters 19, 442 (1967). Our

y(&) differs by a factor of —v from the one used here.
3M. Levine and H. Suhl, Phys. Rev. (to be published).
4J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37

(1964); A. A. Abrikosov, Physics 2, 5 (1965); H. Suhl
and D. Wong, Physics 3, 1 (1967); D. R. Hamann,
Phys. Rev. 158, 570 (1967). Curves for the conductivi-
ty, o =1/p, correctly continued through the famous
Kondo temperature can be found in Suhl and Wong.

5The usual methods of many-body field theory at
finite temperatures, as given in A. A. Abrikosov, L. P.
Gor'kov, and I. E. Dzyaloshinski, Quantum Field The-
ory in Statistical Mechanics, translated by R. A. Silver-
man (Prentice-Hall, lnc. , Englewood Cliffs, N. J.,
1963), will be used.

With the resonance not at the Fermi surface ReZ(0)
&0 and the solution of Dyson's equation is much more
difficult.

~J. M. Luttinger and W. Kohn, Phys. Rev. 109, 1892
(1958).

8We notice that Zz has a local enhancement factor (1
+y)2 due to spin fluctuations, e.g. , as found in P. Led-
erer and D. L. Mills, Phys. Rev. 165, 837 (1967).

~In Ref. 2, the singularities are explicitly exhibited
as a square-root cut 2 below the real axis.

1372


