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small increases take place at especially half the
energy gap and also at other integer fractions of
the gap. '~" As can be seen from these curves in
Figs. 2 and 3, when the samples have been ex-
posed to light, the so-called "mid-gap bump"
becomes clearly visible. The thickness of the
evaporated CdS film is probably uneven; and, at
least at first sight, the experimental results
tend to support the explanation given by Schrieff-
er and Wilkins of multi-particle tunneling. "

In summary, these experiments demonstrate
that it is possible to tunnel through a properly
prepared artificial barrier and that both ordi-
nary tunneling and supercurrent tunneling can be
made photosensitive.
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ESR OF A [111]DEFECT IN X-RAYED LiF~

Y. Hou Chu and Robert Lee Mieher*
Department of Physics, Purdue University, Lafayette, Indiana
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A new defect center that is believed to be the equivalent of the interstitial halide atom
is observed in x-rayed pure LiF. It has the form of a negatively charged diatomic ha-
lide molecule situated on a single halide site and orientated along a I.llli axis. The
ESR constants areg =g =2.0105, g =2.0017, T =T =19.0 G, and T =1005.9 G.Z ' ' X g

' ' Z

This Letter reports the results of measure-
ments and analysis of an ESR spectrum of a new
defect that is produced by x irradiation of LiF at
low temperatures. This new defect has [111]
symmetry and appears to be the interstitial fluor-
ine defect for pure Lip.

Interstitials are important in several phenome-
na of solid-state physics. There are many exam-
ples of interstitial impurities and interstitials as-
sociated with impurities, but interstitials in pure
materials have been very elusive. Until recently,
it was generally believed that the interstitial hal-
ide atom in pure alkali halides was a defect with
[110]symmetry. This [110]defect has the form
of a negatively charged diatomic halide molecule
(e.g. , F, ) centered on a lattice site and is the
result of the combination of an interstitial halide
atom with a halide lattice ion. The [110]defect in
LiF, KCl, and KBr was studied by Kanzig and
Woodruff' by ESR, and was called the H center
since it appeared to correspond' to the optical H
band which was first studied by Duerig and Mark-
ham' after x irradiation of KCl and KBr at liquid-

helium temperature. However, a recent electron-
nuclear double-resonance (ENDOR) study by Dakss
and Mieher has shown that in LiF the [110]defect
is associated with a sodium impurity which is lo-
cated on a nearest-neighbor lithium site. We be-
lieve that the new [111]ESR defect' is also an F,
molecule that is centered on one negative-ion lat-
tice site with the molecular axis in a, [111]direc-
tion.

The observed angular dependence of the ESR of
the [111]defect is shown in Fig. 1 for a rotation
of the magnetic field in a (110) plane. For com-
parison the angular dependence of the ESR of the
self-trapped hole (Vfi center), which has [110]
symmetry, is also shown. It is well established
that the V~ center in the alkali halides has the
form of a negatively charged diatomic halide mol-
ecule (e.g. , F, ) located on two lattice sites and
is the equiva1ent of a ho1e shared by two negative
ions in a [110]direction. 6~7 The ESR spectra of
all F, (and the other halides) defects are char-
acterized by a large anisotropic hyperfine inter-
action between the unpaired electron and the two
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FIG. 1. The angular dependence of the ESR of the
I.ill] defect in LiF for a rotation of the magnetic
field in a 010) plane. The narrow lines indicate the
"secondary splitting" and the dot-dashed lines in-
dicate the region where the resonance lines lie under
the I' center resonance.

nuclei of the molecule. The main difference be-
tween the two spectra in Fig. 1 is due to the dif-
ferent symmetries of the defects since both de-
fects are basically F, molecules.

Very few optical studies of x-rayed LiF have
been made. In LiF an optical band which corre-
sponds to either the [111]or [110]interstitial de-
fect has not been found. Speculation arises as to
whether or not a similar [ill] defect exists in
other alkali halides. None of the optical bands in
KCl and KBr which are thought to involve the in-
terstitial halogen possess [111]symmetry (e.g. ,

and II' '0). Although impurity-associat-
ed defects with [111]symmetry have been report-
ed previously, "~"we believe that this is the
first time that an intrinsic defect with [ill] sym-
metry has been observed in the alkali halides.

It is perhaps not too surprising that the [ill]
orientation is preferred over the [110]orienta-
tion for the pure interstitial defect. Calculations
for KCl and NaC1 by Dienes, Hatcher, and Smol-
uchowski" have shown that if only electrostatic
and ion-core repulsive energy terms are consid-
ered, then the [111]orientation has a lower ener-
gy than the [110]orientation. Figure 2 contrasts
the [111]and [110]orientations for an assumed
internuclear distance of 3.8 a.u. for the F2 mol-
ecule. The lattice ions are shown at their per-
fect lattice positions, and all contours corre-
spond to 0.3 electrons/As. '4 The distance of 3.8

(b)
~ FLUORINE 0 LITHIUM

FIG. 2. The F 2 molecule in Lir for the molecular
axis along (a) l.lllJ direction and (b) fll01 direction.

a.u. gave the best fit for calculations of the V~
center ENDOR hyperfine constants" and this dis-
tance is near the theoretical free-F, internucle-
ar distance of 3.6 a.u. ~' Although the lattice can
have considerable distortion and the internuclear
distance may be less than 3.8 a.u. , it certainly
appears that there is less crowding for the [111]
defect.

We have produced the [111]defect by x rays in
high-purity Harshaw LiF at liquid-helium tem-
perature. The production rate is slow. About 30
h of x irradiation" is required before the ESR
signals are observed with our spectrometer.
The growth of the [ill] defect is approximately
linear up to 300 h (our longest irradiation to
date). Vlf and & centers are also present. While
the V~ center production appears to saturate af-
ter =100 h, the I'" center continues to grow. The
[111]defect was also produced at temperature
up to =40'K and is stable up to =60'K (compared
with =105 K for the [110]interstitial defect).
ESR has been observed from liquid-helium tem-
perature to about 50 K. Throughout this study,
the [110]defect was not observed. Dakss and
Mieher' produced the [110]defect by x-raying
reagent-grade LiF at liquid-nitrogen tempera-
ture. Also, they observed no [110]defects after
100-h irradiation of pure Harshaw LiF at liquid-
nitrogen temperature.
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Table I. Principal values of the g tensor and hyperfine tensor T of the [ill] defect, H, and V~ centers in LiF
and the V~ and VK4 centers in NaF.

Tx
(G)

Ty
(G)

Tg
(G)

ll ill Defect (LiF)
II(LiF:Na)'
V~(L;F)b
V~(NaF)
V~(NaF: Li)

2.0105 + 0.0015
2.0115+0.0025
2.0227 + 0,0010

2.0220
2.0219+ 0.0002

=gx
=&x

2.0234 + 0.0010
=gx

2.0231+0.0002

2.0017 + 0,0002
2.0013+ 0.0005
2.0031 + 0.0010

2.0014
2.00205 + 0.00005

19+5
75+25

59
47
0+$

-0

-Tx
~gx
59
47
0+7

-0

1005.9+0.1
961.0 + 0.6

887
897.1

916.4+,",
4

aM. L. Dakss, thesis, Columbia University, 1966
(unpublished) .
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The observed ESR angular dependence has been
fitted to the spin Ha, miltonian

=P S g H +g P S T I-y H I.

This was performed by choosing basis states

= (m )tl, m)
ms Imi s ' I

(for II, mf), the usual triplet and singlet states
I= &, 0, ml=+&, 0, 0 are formed from the two fluo-
rine nuclei of the molecule) and choosing princi-
pal values of g and T to be g~, g&, gz and T~, T&,
Tz, where z is taken parallel to the molecular
axis. Because of the 3-fold rotation symmetry
of the lattice about the [111]axis, g and 7 pos-
sess axial symmetry such that g~ =gy and T&
= T&. An 8 & 8 matrix was constructed and diag-
onalized and the allowed ESR transitions [&ms
= +1;Emf = 0] were determined and compared with
experimental values at selected orientations of
magnetic field. Because of the large number of
+ centers, present accurate measurements
could not be made for the central lines (mi= 0
transitions) near @=2. The ESR constants so ob-
tained are shown in Table I along with corre-
sponding constants for other F2 -type centers,
&~ and IJ in LiF a,nd ~~ and V~g in NaF.

The [111]defect has resolved "secondary split-
ting" (Fig. 1) arising from the hyperfine interac-
tions with neighboring lattice nuclei. The nature
of the splitting is complex since it is observed to
depend upon both the nuclear-spin state of the
molecule and the direction of the ma, gnetic field
with respect to the lattice. For the magnetic
field parallel to the molecula, r axis, the low-field
resonance line shows a partially resolved seven-
line splitting while the high-field line is struc-
tureless. As the field is rotated toward the [110]
axis, a three-line splitting with amplitude ratio

1:2:1appears. As the magnetic field is rotated
away from the [111]axis towa. rd the [001] direc-
tion, the seven-line splitting fades out and then
reappears. It is tempting to assign this struc-
ture to the six nearby fluorines (two of which are
shown in Fig. 2). However, because of the com-
plicated behavior, more than one set of equiva-
lent lattice nuclei may contribute to the "secon-
da, ry splitting. " Since we plan to make an EN-
DOR study of this defect, we are postponing the
analysis of this additional structure.

The authors wish to acknowledge several help-
ful discussions with Dr. D. F. Daly in the course
of this investigation.
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LOCATION OF ELECTRON AND HOLE CARRIERS IN GRAPHITE
FROM LASER MAGNETOREF LECTION DATA*t'
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Magnetoref lection experiments have been carried out on pyrolytic graphite using cir-
cularly polarized radiation from an infrared gas laser source. From a preliminary
analysis of the data we find that the carriers at point X in the Brillouin zone are elec-
trons rather than holes. Additional support for this conclusion is obtained from a re-
examination of the cyclotron-resonance data of Gait, Yager, and Dail.

Some time ago graphite magnetoref lection data
were obtained by Dresselhaus and Mavroides us-
ing unpolarized light from a conventional infra-
red source, and were used as the basis of their
extensive band parameter determinations. '
These measurements have been repeated and ex-
tended using circularly polarized radiation from
a gaseous infrared laser source. ' Because of
the use of the laser, we have obtained greatly
improved data —both in terms of signal-to-noise
ratio and in the greater information available in
the polarized data. In addition, the laser experi-
ment is inherently a high-resolution experiment
so that we observe the true line shape of the mag-
netoref lection resonances.

The use of lasers in this type of experiment is
a relatively new application of lasers to solid-
state spectroscopy. Although lasers have found
widespread application in areas such as Raman
spectroscopy and high-resolution studies of the
various atomic and molecular levels which par-
ticipate in laser action, less attention has been
paid to high-resolution experiments in which the
electronic levels can be swept through the opti-
cal resonances by means of an external perturba-
tion. Our present studies indicate that this
should be a fertile field for future investigations.

Our experiments were carried out using a 100-
kG water-cooled Bitter solenoid. Samples were
mounted in a helium Dewar with their t.- axes par-
allel to the applied field. The laser radiation
was generated by a gaseous neon laser and was
incident almost normal to the sample surface.
By focusing to a small area of the sample, line

broadening from magnetic field inhomogeneities
was effectively eliminated. Circular polariza-
tion was obtained using a Fresnel rhomb. Be-
cause gold-coated mirrors were used in the la-
ser resonator, a large number of lines oscillated
simultaneously and a low-resolution monochrom-
ator was used to select out one of them.

An important feature of the laser system was a
feedback loop utilizing a second detector to sta-
bilize the laser output power. This was accom-
plished by varying the discharge intensity of the
laser and enabled us to reduce to less than 0.5%
the normally severe intensity fluctuations com-
mon to gaseous infrared lasers. Further reduc-
tion in the effects of amplitude fluctuations was
accomplished by using two Cu'. Ge detectors in a
balanced configuration and employing differential
electronics.

In the experiment the ref lectivity of the sample
was measured at constant photon energy as a
function of magnetic field, and data were ob-
tained at a number of wavelengths ranging from
5.4 to 21.7 p. . Typical recorder traces obtained
far the two senses of circular polarization with

one laser line are shown in Fig. 1.
The oseillations in the lower trace and in the

low-field portion of the upper trace are due to
interband transitions between the Landau levels
which arise from the degenerate F., bands of
graphite. ' The selection rules4 for these transi-
tions are N(v) —(iV +1)(c) for the upper trace and

iV(v) - (N-1 (c) for the lower trace, where N is
the Landau-level index and the subscripts v and

c refer to the valence- and conduction-band lev-
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