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Table I. Data points used in determining best fit.

Decay Branching ratio Reference
A—p+e~+7D (8.8 £1.5) x10™4 a
T=—n+e”+7 (1,25 £0.17) x1073 a
Z-—>Ate~+7 (6.4 +1.2)x107° b
ET—>A+te +7 (1.0%§:3) x1073 c

Decay g4/8y Reference
n—>p+e~ +7V -1.25+0.04 d
A—p+e~+7 -1.14f8‘:§§ e

ZT—n+lT+D 0.05%0:3 This work
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bBarash et al., Ref. 9.
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€G. Conforto, in Proceedings of the International
School at Herceg-Novi, Yugoslavia, 1965, edited by
M. Nikolié (Secretariat du Department de Physique
Corpusculaire, Centre de Recherches Nucléaires,
Strassbourg-Cronenbourg, France, 1965). This value
is compiled from four experiments: V. G. Lind et al.,
Phys. Rev. 135, B1483 (1964); C. Baglin et al., Nuovo
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64 (1965).

The x? is 4.45, and the confidence level is 35%.
We are indebted to Dr. Joseph J. Murray for
the creation of the K~ beam, and we acknow-
ledge the encouragement of Professor Luis W.
Alvarez. We also wish to thank the 25-in. bub-

ble chamber crew and our scanners and mea-
surers for their help.

*Work done under auspices of the U. S. Atomic Ener~
gy Commission.

IN. Cabibbo, Phys. Rev. Letters 10, 531 (1963).

2w, Willis et al., Phys. Rev. Letters 13, 291 (1964).

SR. Bangerter, A. Barbaro-Galtieri, J. P. Berge,
J.J. Murray, F. T. Solmitz, M. L. Stevenson, and
R. D. Tripp, Phys. Rev. Letters 17, 495 (1966);

M. Watson, M. Ferro-Luzzi, and R. D, Tripp, Phys.
Rev. 131, 2248 (1963).
*Events for which the =~ length is less than 1 mm
are excluded to insure that all the events are indeed
Z~ decays.
5G. K#llén, Elementary Particle Physics (Addison-
Wesley Publishing Company, Inc., Reading, Mass.,
1964), p. 361.
fwe adopt the following notation: The Hamiltonian
for leptonic baryon decay is H=(G/V2)J,l,, where I,
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DETERMINATION OF COUPLING CONSTANTS FROM POLES IN SCATTERING CROSS SECTIONS*

R. E. Cutkosky and B. B. Deot
Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania
(Received 2 April 1968)

An optimally convergent polynomial expansion has been used in determining the resi~
dues of pion and A+ Z poles from n-p and K+—p differential scattering cross sections.
A new method of conservatively estimating the uncertainty is also described.

The partial-wave expansion of a scattering
amplitude A(p,x =cosf) only converges within an
ellipse, and therefore does not exploit the full
analyticity properties of A. Assuming A is ana-
lytic for x in a cut plane C, let us find a function

1272

z(x) such that a polynomial expansion in 2 which
is based on the physical region —1<x <1 will con-
verge to A throughout C. According to the theo-
ry of polynomial approximation,! it is necessary
and sufficient that z (x) map the physical region
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and the cuts into a pair of equipotentials for an
electrostatics problem in which opposite charges
are placed on the image of the physical region
and at z =«. Such a mapping may be obtained in
two steps. First the cuts —« to —x_ and x, to

+ in the x plane are symmetrized by the trans-
formation

w = (x=x,)/(1=xx,), 1)
where

Xo=(xp=x_)
X[ 0 =1+ (o 20 _2—x,2—x_2 4+ 1)Y2]7.

These cuts are then mapped onto an ellipse by®
z =sin[z7F (sin~*w, k)/K ()], @)

where =1/w(x,), and K(k) and F (¢, %) are the
complete and incomplete elliptic integrals of the
first kind.® Under this mapping, the image of
the physical region —-1<x<1 is -1z <1, and the
foci of the ellipse are at z=+1. The semimajor
axis is

a =cosh [31K((1-£2)Y2)/K (%)]. (3)

If A has any poles, they will lie on the real ax-
is inside our ellipse, and can be removed explic-
itly. After the poles are eliminated, a polynomi-
al expansion will converge in the physical region
as the series ) ,R™", where!

R=a+ (@®-1)2 (4)

[i.e., the error after » terms is bounded by M/
(R-€)” for any €>0]. The partial-wave expan-
sion generally converges much more slowly.* If
a pole is not eliminated, there will be a slower
convergence, described by a number Ry <R.®
Note that one can meaningfully treat explicitly
even baryon-exchange poles in meson-baryon
scattering amplitudes, which usually lie outside
the region where the partial-wave expansion
could be sensitive to them.

In order to demonstrate the utility of this
transformation in practical data analysis, we
have used it to extract coupling constants from
fixed-energy differential-cross-section data.
(Differential cross sections and amplitudes have
the same analyticity properties in x.) In select-
ing reactions for study, we note that a direct-
channel resonance of high spin would give an an-
gular distribution not easily represented by a
few terms of our expansion. Furthermore, the
residue of the pole should be fairly large, above

the error level of the experiment. We therefore
examined n-p and K+-p scattering.

In the Moravscik® method, one expands about
the pole xp:

(x-xp) as expt

n
=),a (x-x ) 5

2o ®
and relates g, to the coupling constant. We sug-
gest that a much better method is to require the
absence of the poles at x =x; in an expression of
the form

T () =1t -@[(%) <?id§zq) ]

expt Born
:;;Cnpn(x)) (6)

where the p,, are some orthogonal polynomials.
This is similar to the method of Ashmore et al.,’
but the expansion can be obtained by the conven-
tional least-squares techniques, in which the p,,
are orthonormalized according to the statistical
weights of the data. When we work with the
transformed variables z, we use the expression

T(z)=n(z-zl.)[(-§g) (& }
¢ uexpt Born

=2;¢ p (z). (7)

n nn

Multiplication by zeros of the first order as-
sures that a lesser polynomial is needed for a
good fit. Electromagnetic contributions to the
Born amplitude can be introduced explicitly. A
form factor can also be introduced which, of
course, does not alter the residue, but reduces
the usually high Born cross sections to reason-
able values. A theoretical reason for introduc-
ing form factors is that our transformed expan-
sion is somewhat sensitive to the behavior of
Ap,x) at x -~ .

In order to use a form factor without introduc-
ing additional parameters, we assume that ver-
tex functions can be written in a universal form
I“(t—to)/l"(tp—to), where ¢ is the square of the
four momentum, tp is the pole position, and ¢,
is related to the normal threshold energy We
use I'=1/(t,~t) and assume that ¢,= (Eq}, +0.7
BeV)?, where Eip is the normal threshold ener-
gy for the quantum numbers of the pole. The pa-
rameter was obtained by fitting to the proton’s
magnetic form factor. It will be noted that our
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FIG. 1. The inset shows x%(g?) for the 1170-MeV/c
data, with and without a form factor. The main figure
shows ®(g?). The notation is defined in Fig. 2.

Ansatz implies that the Born approximation for
scattering cross section varies with { somewhat
like the fourth power of the electromagnetic
form factors.

The inset in Fig. 1 shows how x? varies with g
for the 1170-MeV/c K'-p data when three terms
are included in the expansion. On applying the
usual criterion,® ” we would infer (from the
curve obtained when the form factor is omitted)
that gA22 =15.9+0.8; we believe that this criteri-
on systematically underestimates the uncertainty
of the determination of g% and propose here a
new method of estimating the uncertainty which
is much more conservative and, we believe,
more realistic. The idea is that, instead of de-
termining the uncertainty by the values where
Ay?=1, we estimate the maximum allowed Ax?
by including an estimate of the contribution of

2

Table I. Pion-nucleon coupling constant from n-p scattering and the sum g 22=
tering. The numbers in parentheses are the number of terms required for a good

the limit of error is uncertain, but very large.

the remaining terms of the expansion, assuming
that the ¢,, decrease roughly as R,

In order to have a simple way to combine
these systematic errors with the statistical er-
rors, we assume that the coefficients ¢, are
Gaussian random variables with mean zero and
variance vn:vOR‘zn.8 The function

i S [~ 2 -1
¢, =min2} lc (1+vn) +1n(1 +vn)], (8)

where the minimization is carried out with re-
spect to v, and to the vy, for n>N [i.e., vy =max
(0,c)2-1) for n>N], is essentially -2 times the
logarithm of the likelihood function. (The c,, are
normalized so that their statistical error is +1.)
We define the convergence test function & to be

‘I’=¢M“Pn, (9)

where M is to be big enough that Con—PM (m >M)
is independent of g%, and where N is the first val
ue for which the minimum y? indicates a good fit
to the data (N is shown inside parentheses in Ta-
ble I). However, it is usually necessary to re-
place N by N+1 in the neighborhood of the mini-
mum xz, in order to avoid discriminating against
values of g% for which the remaining terms in

the expansion are smaller than expected. This
adjustment can be made in such a way that &(g®)
remains a continuous function. The function &

is a measure of the degree to which the nearby
pole, as a result of not being correctly subtract-
ed out, upsets the rate of decrease of the ¢ for
n> N that would be expected from the size of the
ellipse of meromorphy. We have normalized

the convergence test function @ in such a way
that it has roughly the same meaning as x*:
A®~] js taken as one standard deviation, A® ~4

2 2 +
EANK TE8INK from K -p scat-
fit. {g question mark means that

Scattering Conventional expansion Transformed expansion
process Without form factor  With form factor Without form factor With form factor
n+p, 350 MeV 14.0 +1.9 14.0 +1.3 14,514 14,1734
(7) (7 (6) (6)
n+p, 400 MeV 11527 14,348 14,34 13,9246
(8) (8) (6) (6)
K" +p, 1170 MeV/c (Not determined) 1457, 1743
(3) (3)
K" +p, 960 Mev/c 1173
+1970 MeV/c (3+86)
K +p, 780 MeV/c (Not determined) sz 1218
(3) (3)
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as two standard deviations, etc.® In the tables
we quote a “best estimate” of g% based on the
minimum of ®, and an uncertainty calculated as
half the width of a (roughly 95%) fiducial interval;
in other words, the uncertainty is taken as half
the distance to the point where A® =4,

The results of analysis of n-p scattering data
at 350 MeV 72 and at 400 MeV*! are shown in
Fig. 2 and Table I. We call attention to the fol-
lowing points: The uncertainty we quote for the
conventional method is much higher than that
quoted in Ref. 7. The form factor makes a sur-
prisingly dramatic improvement in the conven-
tional method. The coupling constants deter-
mined at the two energies are consistent with
each other and with the value obtained from the
forward n-p dispersion relation, which is'?
14.4+0.4.

Experimental K+—p differential cross-section
data are now available at a number of energies.'?
We ignore the mass difference of the A and Z,
combining the two poles into one!* which has a
residue depending on the sum of the residues
EANK +&xNK =&Ax°. There have been contra-
dictory estimates of gpx? from forward disper-
sion relations?® as well as from photoproduction
data.'® It is, therefore, of some interest to have
an independent determination from fixed-energy
data, in which the model-dependent errors are
controllable.

We show in Fig. 1 and in Table I our results,
as obtained with the form factor described above
(this form factor is actually quite close, numeri-
cally, to the ones usually used in the static mod-
el). Without a form factor, we obtained essential-
ly the same lower limits for gAzz, but no clear
upper limits. The conventional expansion gave,
of course, no determination at all.*”

We wish to emphasize that the uncertainties
quoted in the tables arise primarily from the
systematic errors and not from the statistical
uncertainty of the data. It is therefore not prop-
er to combine statistically the determinations
made at nearby energies, because the effective
potentials are certainly not independent. The
right way to combine the data would be through a
proper energy-dependent analysis. However, in
order to give an indication of the results that
might be obtained from such an analysis, we have
added ®(960 MeV/c) to $(1970 MeV/c); at these
two energies the scattering cross sections have
very different appearances, and our expansion
required twice as many terms at 1970 as at 960
MeV/c. Besides, the inelastic cross sections

FIG. 2. Plots of the convergence test function & (g?)
for n-p scattering. Notation: dotted line, conventional
expansion without form factor; dash, conventional ex-
pansion with form factor; dot-dash, new expansion
without form factor; solid, new expansion with form
factor,

are quite different. If we average the two best
upper limits and lower limits given in Table I,
we obtain the estimated best value and fiducial
half-ranges to be
21516

Eps =157%5. (10)
The estimate from the forward dispersion rela-
tions is'® gp?=13+3.

In conclusion, we emphasize the following
points: The full use of analyticity properties is
of great practical advantage in analyzing data.

To some extent, this has been obscured in the
past by overly optimistic estimation of uncertain-
ties. It is important to make use of theoretical
knowledge about the rate of convergence of ap-
proximations in such an estimation. The fact
that good agreement is obtained between coupling
constants inferred from fixed-energy and from
fixed~momentum-transfer analyses is comfort-
ing both for SU(3) and for the analytic properties
of the S matrix, even though the uncertainties
are at present still large.

We suggest that our transformation may be
very useful in a partial-wave analysis. Some
further developments which may be of value are
treatment of the energy dependence of the expan-
sion coefficients, consideration of the possibility
of analytic continuation beyond the branch cuts,
and application to production processes.

We thank Professor L. Wolfenstein, Professor
J. Belinfante, Professor G. Renninger, and Pro-
fessor K. V. L. Sarma for many useful discus-
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sions, and Professor V. J. Mizel and Professor
M. H. Schultz for referring us to the work of
J. L. Walsh (Ref. 1).
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Commission.
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