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Strongly amplified magnetostatic mode echoes in a ferrite are observed at X-band
frequencies and temperatures from 300 to 1.6 K. Echo formation is discussed in terms
of a mechanism in which the resonance frequency of a mode is a function of its ampli-
tude of excitation.

We have observed strongly amplified echoes in
a ferrite following typical two- and three-pulse
echo sequences. Two-pulse echoes were gener-
ated with intensities exceeding that of the first
pulse by a factor of 10'. An important property
of these echoes is that their amplitudes initially
increase with increasing pulse separation, reach-
ing a maximum value and then decreasing as re-
laxation becomes dominant. This behavior con-
trasts sharply with that of the usual spin echo'
and previously observed magnetostatic mode
echo, ' which decay monotonically with pulse sep-
aration, with an echo intensity always smaller
than that of either exciting pulse.

The experimental observations were made on
single crystals of yttrium iron garnet of several
arbitrary shapes, in a dc magnetic field. The
microwave pulses were generated and detected
with an apparatus previously described. ' We
have been able to find amplified echoes through-
out the X-band frequency range (8.2-12.4 GHz)
with echo intensity 10 to 10' greater than the in-
tensity of the first pulse. Inhomogeneous micro-
wave magnetic fields were used to excite prefer-
entially volume magnetostatic modes of short
wavelength. The effect was observed from 300
down to 1.6'K with only a slight increase in de-
cay time at lower temperature due to a corre-
sponding decrease in mode linewidth. A two-
pulse echo sequence is shown in Fig. 1(a). The
first pulse, increased by 10' for comparison, is
displayed on the receiver trace using a double
exposure technique. The second pulse, which is
10 nsec in duration, is electronically blanked
from the display. Echoes could be observed with
a first-pulse power as low as 5~10 ' W, which
is close to the thermal noise level under our ex-
perimental conditions. The peak power of the
second pulse for maximum amplification is typ-
ically 1-5 W with a duration of 10-100 nsec. As
much as 0.1 /o of the second-pulse power may be
returned in the echo. An echo envelope obtained
by multiple exposure of an oscilloscope trace for
a variable pulse separation is presented in Fig.
1(b) and shows the typical rise and decay pattern
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F1G. ].. (a) Two-pulse echo in single-crystal yttri-
um iron garnet illustrating amplification of the first
pulse by 10 . The second pulse is electronically
blanked. (b) Envelope of amplified two-pulse echo as
the pulse interval is varied. The upper trace monitors
the position of Pulse 2. The position range of Pulse 1
is indicated by the double-ended arrow.

We believe that the energy-storage process is
similar to that of spin echo, namely, storage of
the excitation among a large number of oscilla-
tion modes within the Fourier spectrum of the
excitation pulses. The net magnetic moment pro-
duced by the pulses vanishes rapidly as the
modes lose their phase coherence. An echo re-
suits from the return of phase coherence at spec-
ified times. In this case the mechanism for re-
storing coherence at echo time must be quite dif-
ferent from that of spin echo. A number of alter-
native nonlinear mechanisms, all of which in
principle can result in echoes, have been sug-
gested~ 6 in connection with the discovery of cy-
clotron echo. ' The observed behavior of this fer-
rimagnetic echo suggests that the amplification
results from a dependence of the mode frequen-
cy upon mode amplitude. '~ Such amplitude de-
pendence can arise in principle from any of the
nonlinear interactions in the spin system, but
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the dipolar interaction seems the most likely
candidate. An easily visualized mechanism is
provided, for example, by the decrease in paral-
lel dipolar fields with increased precession an-
gles.

In order to avoid a lengthy mathematical dis-
cussion, we confine ourselves to a qualitative
exposition of the process by which amplitude-de-
pendent frequencies result in echoes. %e treat
the problem in a random phase approximation;
i.e., it is assumed that at a time t = & sufficiently
long after the incidence of the first pulse of am-
plitude A, the mode density n(8) is a constant, in-
dependent of the phase angle & [see Fig. 2(a)].
The resultant transverse magnetization, obtained
by summing over all modes, equals zero. At t
= 7 a second pulse of amplitude A, and duration e
is introduced. Under linear conditions, at t =2y,
n(&) will again be a constant, Fig. 2(a). If the
first pulse is very small compared to the second,
the angle ~k of a particular mode will be essen-
tially the same at t=2& as at t= &, just prior to
the incidence of the second pulse, as the phase
of each mode drifts by the same angle during the
intervals 0 &t & & and «t &2T. Superposition of
the two excitations on a particular mode follow-
ing the second pulse at t = 7+ ~ may be represent-
ed in the form & =A. 1'+&2'+28 F42 cosok. The
explicit form of the frequency dependence will
vary with the experimental conditions. To illus-
trate a simple case we choose the oscillator fre-
quency & to vary with -&', which is the contribu-
tion to the frequency shift from the lowest order
terms in the Hamiltonian expansion discussed be-
low. Under this assumption one obtains a 0-de-
pendent frequency shift b, ~(e) = —@ATE,cos8,
Fig. 2(b), where n is an arbitrary coefficient.
The arrows indicate schematically the sense and
magnitude of the additional phase drift imposed
due to b e(&). Thus, at t = 2& a given mode will
arrive not at the angle ~k but at Ok-«Ap42 cosek.
The mode density n(8) is therefore bunched to-
ward e= -m/2, Fig. 2(c), resulting in a net trans-
verse magnetic moment in that direction, and
hence an echo. As & equals -10' precession cy-
cles, a very small frequency shift can produce
a large echo. Echo energy is drawn from the
second pulse, the first pulse providing the ~ de-
pendence of the phase shift. Large amplification
is consequently possible. Note also that since
the phase shift at t=27 is proportional to T the
echo will increase monotonically with 7 until de-
graded by relaxation effects.

It is necessary to add some remarks concern-
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FIG. 2. Echo formation due to an amplitude-depen-
dent frequency. (a) Mode density n(8) at t = v, and at
t = 27 in the linear case. (b) Amplitide-dependent fre-
quency shift he@(8) folio@ring the second pulse.
(c) Mode density z(8) at t = 2z resulting from phase
bunching induced by frequency shift.

ing the nature of the modes and their relation to
the magnetic Hamiltonian. ' The Hamiltonian is
usually given as an expansion in terms of canoni-
cal spin-wave variables uk. At low excitation
levels K=+)t&uyuyuA, *, and uy represents the am-
plitude of a normal mode at frequency &k. At
high signal level higher order terms arising
from dipolar and exchange interactions and from
crystalline anisotropy must be included, e.g. ,
ukuk *ukI uklI*, etc. It is easily seen that terms
of the form ukuk*ukuk*, and higher even-order
"self-interaction" terms, represent (in a dissi-
pationless system) an amplitude-dependent fre-
quency shift. However, the mere presence of
such terms in the Hamiltonian does not guaran-
tee the appearance of an echo, as they must com-
pete with all the interactions among modes of
different k. In fact, if the modes are true "mo-
mentum" states of the form exp(iver), then it can
be shown on the basis of complementarity argu-
ments that no echo can occur. ' On the other
hand, if the modes are spatially localized, the
self-interaction terms for which k =k'=k" =k"'
are favored and echoes will result. In the pre-
sent experiment localization is obtained by cou-
pling to short-wavelength magnetostatic modes
(&-0.001-0.01 cm) whose group velocity is small
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over a, wide range of wavelengths, and by pro-
viding inhomogeneous internal fields by the
choice of irregularly shaped samples. Some
mode overlap must remain because of exchange
and will contribute to the echo decay by dephas-
ing the echo components.

We would like to acknowledge valuable assis-
tance of Mr. Steve Ichicki in these experiments.
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This result follows because the dipolar interaction

is a function of position coordinates only. This point
will be analyzed in detail elsewhere.

CRITICAL-POINT MAGNETIZATION OF AN IMPURITY IN AN ANTIFERROMAGNET
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The magnetization of Fe in MnF2, measured in terms of its magnetic hfs interaction,
exhibits a critical exponent P equal to that of the host lattice. The large change in the
coefficient D is ascribed to the effects of anisotropy and to the difference between the
Fe-Mn and Mn-Mn exchange.

It is well known that the temperature depen-
dence of the magnetization of a spin impurity in
a magnetic solid may be quite different from
that of the host. This effect can be demonstrat-
ed within the confines of molecular-field theory
and arises whenever the impurity spin or its cou-
pling to the molecular field differs from that of
the host atoms. This effect has also been treat-
ed from the point of view of spin-wave theory. '
However, neither of these two approaches pro-
vides a valid description of the temperature de-
pendence of the magnetization of a pure sub-
stance in the critical region. ~ The behavior of
an impurity in that region is therefore best ap-
proached by comparing it with the behavior of
the host lattice.

For this experiment we chose MnF~ as the
host lattice because its critical behavior has
been more thoroughly analyzed than that of any
other magnetic material, '& and Fe'+ as the im-
purity because it can be studied by Mossbauer ef-
fect. A recent examination of the magnetization
of Fe + in MnF~ in the spin-wave region' showed
that the impurity magnetization drops much
more slowly with increasing temperature than
the magnetization of the host. This effect arises
because the Fe-Mn exchange is larger than that

between Mn atoms and also because of the great-
er anisotropy of the D-state impurity. The dif-
ference in spin, 2 for Mn~+ and 2 for Fe'+, also
contributes. We here report the extension of
these measurements into the critical region.

The experiment was carried out with MnF, into
which radioactive "Co'+ had been introduced as
a dilute impurity. ' On the basis of the total ac-
tivity, the crystal contained -10"atoms/cm' of
"Co. The cobalt decays by electron-capture to
"Fe, which then emits the 14.4-keV gamma ray
used in the Mossbauer-effect experiment. The
spectrum was obtained with a conventional con-
stant-acceleration spectrometer, using a single-
line K 57Fe(CN), ~ 3H, O absorber. The MnFa sam-
ple was immersed in liquid nitrogen. Tempera-
ture was regulated by controlling the vapor pres-
sure with a Cartesian diver manostat.

Experiments in the paramagnetic region show
that the 57Fe'~ produced by the electron-capture
decay of the divalent "Co is entirely in the diva-
lent state when the Mossbauer gamma ray is
emitted. This is in accord with the finding in a
similar experiment on "Co in rutile structure
ZnF, .' The Mossbauer-effect hyperfine spectra
obtained in the critical region are very similar
to those in the critical region of FeF,.' They
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