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structure is consistent with the predictions of the
many-body calculations of Mahan and Conley. '9
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In this Letter we present a new formulation of
the theory of galvanomagnetic phenomena in
strong magnetic fields, where &u&T»1. (&oc is
the cyclotron frequency and T is some average
relaxation time. ) The present work differs from
the usual treatments'~' in that it is not limited to
Ohmic conductivity (linear response in the elec-
tric field), nor does it depend on the existence
of a relaxation time. We consider instead the
asymptotic state of the system when &&7 -~ and
seek to determine the corresponding asymptotic
distribution function (ADF), which serves as the
zero-order function in a perturbation theory ex-
pansion in 1/~~7 Only the .semicla. ssical theory
will be presented in this Letter.

The semiclassical description of transport phe-
nomena is based on the Boltzmann equation,
which is generally insoluble except in instances
where the effect of collisions may be represent-
ed by a relaxation time. When such simplifica-
tion is not possible, numerical techniques are
required to solve even the Ohmic transport prob-
lem. An example is provided by polar optical-
phonon interactions, where variational methods

have been employed. '
We first sketch our theory for the case of clas-

sical statistics (no exclusion principle) and then
present the modifications for Fermi statistics.
The general characteristics of the ADF are es-
tablished and the special case of Ohmic conduc-
tivity is treated in detail, where explicit expres-
sions are derived for the transport coefficients.
The case of polar optical-phonon interactions is
treated as an example and exact formulas for
the conductivity are given.

The steady-state Boltzmann equation to be
solved is

e[E+vxB] v f
p

= &f=fdp'[f 0')T-; f@)T-,), -

where g is the usual collision operator, and the
electric (E) and magnetic (B) fields are taken in
the z and z directions, respectively. In order to
calculate the ADF we introduce the path-vari-
able transformation, 4 for which we must first
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calculate the collision-free particle trajectories:

dp/dt =e[E+vxB].

The transformed Boltzmann equation then be-
comes

fg) = dsJ dp'f(p')T,
( )

exp J ( )
(2)

with

1/7(s)= f-dp'T. . .,
p (s)p'

der O(1/~c7) terms will be considered here,
and we therefore set f=fADF+f1, where fl
-O(1/~c7) and is determined by

e[E+vxB] V f =Cf
p 1 ADF

We are particularly interested in the dissipative
current in the g direction and may calculate v~
directly by the same moment procedure used
above:

v = fdpp Cf /eBx y

where p(s), 7(s) indicate the respective quanti-
ties evaluated along the trajectory. 4 We consid-
er only the case of closed orbits and denote by
T the period of the orbit. Equation (2) may then
be reduced to an integral over one period: f, ds[Cf] = 0 with f(p) =f(p(s)). (8)

Since by Eq. (5) fADF is constant along the tra-
jectory, we may restate the condition given by
Eq. (4) as

f(p)
T S

f, dsfdp'f(p')T, exp[-f ds'/7 (s')]

T1-exp[-f, ds'/~(s')]

We now consider the limit &ec7» 1 (7/T»1), so
that Eq. (3) becomes:

fy)f dsfdp T

= f ds fdp'f(p')T
(

T
pps

e(E+vxB) V f=0, (5)

from which it follows immediately that the aver-
age velocity V~ = 0 and v =F/B =—vd. Equation
(5) follows directly from Eq. (4) and the average
velocity is obtained by multiplying Eq. (5) by p,
and integrating over p with an integration by
parts.

We may now carry out a perturbation theory
about this asymptotic state. Only the lowest or-
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The analogy between this result and the ther-
mal equilibrium condition Cf = 0 is striking, the

only difference being that the transition rates ap-
pearing in Eq. (4), which determines the ADF,
are averaged over one period of the collision-
free trajectories. Thus the ADF is independent
of the absolute coupling constants describing the

interaction with the scattering system and de-
pends only on the form of the interaction and the

applied fields.
It is readily verified that the ADF, determined

by Eq. (4), also satisfies

A similar calculation for the case of Fermi-Di-
rac statistics yields the identical results given
in Eqs. (7) and (8) except that C is replaced by

(10)

where T is the lattice temperature and C is the
sound velocity. The coupling constants are total-
ly absent, and only the sound velocity enters ex-
plicitly in the ADF.

We now treat the Ohmic problem, where we
keep only linear terms in F.. Consider the func-
tion fp(e p&vd)=fp(e) -p&vdsfp/se, —where e is
the electron energy and f, is the thermal equilib-
rium distribution. Since e-p&vd is a constant of
motion, this function is constant along the trajec-
tory and Eq. (8) becomes

40
dsc Pv

pos

Cf =fdp'(f(p')[l-f(p)]T,
p p

-f(p)[1-f(p')]T- -,] (9)
p~ p'

We note that the condition (8) assures the solubil-
ity of Eq. (8) and thus guarantees the consisten-
cy of our perturbation theory. While no special
application to the non-Ohmic problem will be
made here, we illustrate the character of the
ADF for the case of acoustic-phonon interac-
tions, where an approximate solution has been
obtained in the diffusion approximation':

e/kT* -v dp v

kr~ '
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(p ' p')'—
J J dpdp'( ) f (P)T~~ (12)

for classical statistics. ' The similarity of this
result with the quantum-orbit jump picture is
striking. An analogous result for Fermi statis-
tics is also readily obtained, the only difference
being the appearance of the exclusion factor
[i-f,(p')] in Eq. (12).

We now calculate the conductivity for polar op-
tical-phonon interactions, where no previous so-
lutions of the Boltzmann equation have been ob-
tained. Assuming a constant effective mass m

and introducing the usual interaction matrix ele-
ments into the transition rates Tppi in Eq. (12),
we obtain for classical statistics

lg
4EEP'5e' K, (,'5)-

V

SB [2mb T/m ]

where po(s) is now the trajectory in the absence
of the electric field, since the integrand is al-
ready linear in F. . A wide class of scattering
mechanisms satisfies this condition; in particu-
lar any system which is isotropic (or has even
cylindrical symmetry about B) will satisfy this
condition. Even this condition can be consider-
ably relaxed, but we shall not consider it in de-
tail here In .any event Ecl. (ii) by no means sug-
gests the existence of a relaxation time, as can
readily be seen for the case of polar modes, and
we take it to be satisfied. '

We then have f~F =f0 p&vd-(9fo/ae) and from
Eg. (7),

v =v JdpP CP fo/eBkT,x d y y o

N= SQ)o

e -1 kT

where h&0 is the optical-phonon energy, F,, is re-
lated to the coupling constants, and K, is the
first-order modified Bessel function. This re-
sult is identical to the classical limit of the Ku-
bo formula, which has been evaluated by Green's
function techniques. ' The corresponding expres-
sion for Fermi statistics will not be given here.
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