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Liquid-helium-temperature tunneling data for PbTe indium-doped p-n junctions ex-
hibit a series of sharp conductance increments with 5-mV spacing as well as the "ze-
ro-bias conductance minimum" and the LO-phonon shoulder at 13.8 mV. Indium-gal-
lium alloyed junctions exhibit also a second series with -6.5-mV spacing. This peri-
odic structure is attributed to the "inelastic scattering" of tunneling electrons by lo-
calized vibrational modes of the indium and gallium impurity atoms in the tunneling
junction.

In the course of an investigation of the "zero-
bias conductance anomaly" in PbTe indium-al-
loyed P ntunnel ju-nctions, ' we have observed a
sharp periodic structure, with approximately 5-
mV spacing, in the curves of dI/dV vs V and
dmI/dV2 vs V in the voltage range I Vi &30 mV.
When indium-gallium mixtures were used as the
alloying material, an additional periodic struc-
ture was observed with approximately 6.5-mV
spacing. The sharp periodic structure is attrib-
uted to an "inelastic scattering" of tunneling
electrons by localized vibrational modes of indi-
um and gallium substitutional "impurity" atoms
in the transition region of the p njunctions. -
The observed spacing is consistent with the exci-
tation energies of the localized modes, which
are calculated from the mass-defect parameter
and the LO-phonon energy, for indium (ku]oc
= 5 meV) and for gallium (K&uioc = 6 meV).

The diodes, which were formed by alloying
0.003-in. -diam indium (and indium-gallium)
spheres into degenerate P-type PbTe (np = 5

x10" cm '), exhibit a, "zero-bias conductance
minimum'" and a conductance rise at eV = @~LO
=13.8 meV corresponding to the LO-phonon en-
ergy. The narrow conductance minima in al-
loyed P njunctions in the III-V c-ompound semi-
conductorss ' and in the IV-VI compound semi-
conductors' ' have been attributed to polaron ef-
fects3&' and, more recently, to impurity-induced

inelastic scattering by acoustic phonons. Redi-
ker and Calawa have observed that the minima
for PbTe P-n junctions disappeared at relatively
low magnetic fields, whereas the minima for III-
V compound P-n junctions were magnetic field
independent up to fields of the order of 100 kG. '
It was these observations which led us to under-
take a detailed investigation of the zero-bias con-
ductance anomaly in PbTe. In the present exper-
iments, the conductance minima were studied in
the temperature range 1.1'K&T &10'K and in
magnetic fields up to 20 kG.

Our data show that the minima have the form
of an energy gap characteristic of tunneling in-
volving a superconductor. We find that the shape
of the conductance minimum" and its tempera-
ture and magnetic field dependence, " shown in
Fig. 1, are qualitatively the same as those of the
curve for dI/dV vs V of a superconductor-insula-
tor-metal tunneling junction. This indicates that
the minimum is associated with superconductor
tunneling through a Schottky barrier at the metal-
semiconductor contact. The width of the mini-
mum indicates an energy gap of 24-2 meV.
Furthermore, the observed disappearance of the
minimum by T & 7'K and the observed tempera-
ture dependence of the width indicates a transi-
tion temperature T~ 7 K. These values are con-
sistent with the value obtained from the BCS re-
lation 2~ =3.5kT. The energy gap is believed
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FIG. . a2 ( ) The curve of dI/dV vs V for a PbTe(fn
p-n junc con st shows the -5-meV indium peaks. ( ) e
curve of dI/dV vs V shows the two sets of peaks for
the indium-gallium p-g junctions. The zero-bias mini-
mum has been included in the figure even though it oc-
curs at a higher conductance value.

to be associated with a superconducting alloy of
Pb:In. i

The sharp (5V =AT) periodic structure observed
in the indium-alloyed samples is shown in the
curve of d'I/dV vs V in Fig. 2(a). The structure,
which corresponds to an increase in tunneling
current occurs at voltages given by

leV-b I =nEi-Eo, n= 1, 2, 3, ' ' ',
E =5 V and E =2.6 meV. The two setswhere E, = me 0

of per~o ic s' d' tructure observed when indium-ga r-
um mixtures (ranging from 95%:5/o to 60/o.'o):40%
were used as the alloying material are shown in

the plot of dI/dV vs V in Fig. 2(b). One set is
the same as in the pure-indium case and the oth-
er occurs at voltages given by

leV-b, I
= mEB-Eo, m= 1, 2, ~ ~ ~ (2)

where E, =6.5 meV and E,=2.6 meV, the same
th pure-indium case. The voltages at

endent ofwhich the structure appears are independen o

studied (1.1'K (T 4.2'K and I Ho I
( 20 kG).

th'e attribute this periodic structure to the "in-
elastic scattering" of tunneling electrons by lo-
calized vibrational modes of indium (and galli-
um' tempura yt

" atoms in the transition (tunnel-

ingj region o ej f th junction. ' ~' The excitation

energies of localized modes of a light-mass im-
purity atom are given by'6

E = h(o = (e /e )'"(1-S') "'5(u, (3)loc loc ~ 0

where & and &, are the high-frequency and stat-
S= 1-M /ic dielectric constants of the medium,

M (for M;(M) is the "mass-defect parameter, "
M; is the mass of the impurity atom, and M is
the mass of the atom at whose lattice site the im-
purity is located. Using e = 32,"e, = 400, SLO
=13.8 meV, and M=MPb, the spacing between
energy eve gy levels ~bloc is calculated to be -5 and
-6 V for indium and gallium, respective y.
Th f the shift -E0 is not well unders oo .tood.

No periodic structure is observed in data on
Schottky tunneling junctions consisting of indium

&7 s Thiscontacts on n-type PbTe (ne = 10 cm . is
is consistent with the fact that no alloying is in-
volved in the fabrication procedure and thus no

indium impure ie't es" should be present within the
(Schottky) tunneling barrier. On the other hand,
f t eratures below the super conductivefor empera u

= 3.4'K),transition temperature of indium
the curves of d'I/dV vs V exhibit the character-
istic phonon structure and energy gap of the tun-
neling ense oI d ay of states of indium. " Structure
observed at le V—&ln I = 13.6 meV is associated
with the LO phonon in PbTe and the form of the
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structure is consistent with the predictions of the
many-body calculations of Mahan and Conley. '9
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In this Letter we present a new formulation of
the theory of galvanomagnetic phenomena in
strong magnetic fields, where &u&T»1. (&oc is
the cyclotron frequency and T is some average
relaxation time. ) The present work differs from
the usual treatments'~' in that it is not limited to
Ohmic conductivity (linear response in the elec-
tric field), nor does it depend on the existence
of a relaxation time. We consider instead the
asymptotic state of the system when &&7 -~ and
seek to determine the corresponding asymptotic
distribution function (ADF), which serves as the
zero-order function in a perturbation theory ex-
pansion in 1/~~7 Only the .semicla. ssical theory
will be presented in this Letter.

The semiclassical description of transport phe-
nomena is based on the Boltzmann equation,
which is generally insoluble except in instances
where the effect of collisions may be represent-
ed by a relaxation time. When such simplifica-
tion is not possible, numerical techniques are
required to solve even the Ohmic transport prob-
lem. An example is provided by polar optical-
phonon interactions, where variational methods

have been employed. '
We first sketch our theory for the case of clas-

sical statistics (no exclusion principle) and then
present the modifications for Fermi statistics.
The general characteristics of the ADF are es-
tablished and the special case of Ohmic conduc-
tivity is treated in detail, where explicit expres-
sions are derived for the transport coefficients.
The case of polar optical-phonon interactions is
treated as an example and exact formulas for
the conductivity are given.

The steady-state Boltzmann equation to be
solved is

e[E+vxB] v f
p

= &f=fdp'[f 0')T-; f@)T-,), -

where g is the usual collision operator, and the
electric (E) and magnetic (B) fields are taken in
the z and z directions, respectively. In order to
calculate the ADF we introduce the path-vari-
able transformation, 4 for which we must first
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