

FIG. 2. Angular dependence results for several input intensities I_1 , as calibrated by Fig. 1(a), where I_0 corresponds to an average θ_1 of the order of $\frac{1}{2}\pi$. Results from repeated runs show the slope to be independent of input intensity to within an uncertainty of $\pm 15\%$.

that pulse-induced dephasing is not important here. The magnetic field effects are believed to be due to $Cr^{3+}-Al$ interactions,^{2,8} and the details remain to be calculated.

The technical assistance of Mr. Fred Rachford is gratefully acknowledged.

*%ork supported by the Advanced Research Projects Agency (Project DEFENDER) and monitored by the U. S. Army Research Office-Durham, Contract No. DA-31-124-ARO-D-426.

 1 N. A. Kurnit, I. D. Abella, and S. R. Hartmann, Phys. Rev. Letters 13, 567 (1964).

²I. D. Abella, N. A. Kurnit, and S. R. Hartmann, Phys. Rev. 141, 391 (1966).

3I. D. Abella, A. Compaan, and L. Q. Lambert, Bull. Am. Phys. Soc. 13, 55 {1968).

4E. L. Hahn, Phys. Rev. 80, 580 (1950).

5S. L. McCall and E. L. Hahn, Phys. Rev. Letters 18, 908 (1967).

 ${}^6C.$ K. N. Patel and R. E. Slusher, Phys. Rev. Letters 19, 1019 (1967).

 N . A. Kurnit and S. R. Hartmann, in Interaction of Radiation with Solids; Proceedings of the Cairo Solid State Conference at the American University at Cairo, Egypt, 1966, edited by A. Bishay (Plenum Press, Inc., New York, 1967), p. 693.

 ${}^{8}D$. Grischkowsky and S. R. Hartmann, Phys. Rev. Letters 20, 41 (1968).

NUCLEAR RELAXATION AND PAIR CORRELATION IN PARAMAGNETS

B. G. Silbernagel* and V. Jaccarino*

Department of Physics, University of California, Santa Barbara, California

and

P. Pincus[†] Department of Physics, University of California, Los Angeles, California

and

J. H. Wernick Bell Telephone Laboratories, Murray Hill, New Jersey (Received 11 March 1968)

From NMR relaxation studies, experimental and theoretical evidence is obtained for electron-spin pair-correlation effects in paramagnets.

Nuclear spin-lattice relaxation caused by indirect hyperfine coupling between paramagnetic spins and the nuclei of nonmagnetic ions has been studied in the paramagnetic state of magnetically ordered systems. These measurements were made at sufficiently high temperatures for critical fluctuation phenomena to be unimportant. Direct measurements of the spin-lattice relaxation time (T_1) were made on the Al²⁷ nuclei in the

 $XAI₂$ (X=rare earth) intermetallic compounds using transient techniques. An unexpected but substantial temperature variation of T_1 of Al²⁷ is observed at high temperatures. It is also noted that a large, and as yet unexplained, temperature variation of the F¹⁹ linewidth $(\Delta H \sim 1/T_2 \sim 1/T_1)$ exists well above T_N in MnF₂. We will demonstrate that both the sign and magnitude of the temperature dependences are associated with

short-range electron-spin correlation in the paramagnetic state.

The $T₁$ measurements were made on fine powders (<400 mesh) of the $XAl₂$ compounds at temperatures from 77 to 373° K in an external magnetic field of 9 kOe using a phase-coherent, pulsed-nuclear-resonance spectrometer. All $XAI₂$ compounds except PmAl₂ were examined. No spin echo was observed in EuAl, GdAl, and TbAl₂, and, although the echo was observable in $DyAI₂$, $HoAI₂$, $ErAI₂$, and $TmAI₂$, the lines were too broad (~500 G for the $\frac{1}{2} \leftrightarrow -\frac{1}{2}$ transition) for the line to be saturated.¹ The linewidths were the line to be saturated. The linewidths were
sufficiently narrow (<50 G for the $\frac{1}{2} \leftarrow -\frac{1}{2}$ transi tion) for T_1 's to be measured in the magnetic CeA1₂, PrA1₂, NdA1₂, and SmA1₂ compounds and the nonmagnetic compounds $LaAl₂$, $YbAl₂$, and LuAl, . A comb of 50-100 pulses with an rf field strength of 30-40 G was sufficient to saturate the resonance line. The recovery of the magnetization was exponential and T_1 's measured in external fields of 9 and 6.3 kOe were equal to within experimental error.

In the nonmagnetic compounds of this series (LaAl₂, YbAl₂, LuAl₂) $1/T$, is proportional to T, as expected for nuclear relaxation via itinerant electrons. We find that $1/T$, $T=0.94$ and 0.107 $({}^{8}K \text{ sec})^{-1}$ for LaAl, and LuAl, respectively. Using the Korringa relation

$$
\left[\frac{1}{T_1T} = \frac{4\pi k}{\hbar} \left(\frac{\gamma_n}{\gamma_e}\right)^2 K^2\right],
$$

these values of $1/T_1T$ are in agreement with the previously determined values of the Knight shift $(K \approx 0.075\%).$ ¹ The approximate equality of 1/ T_1 T in LaAl, and LuAl, indicates that the itinerant electron band structure is similar for all of the electronically isomorphic cubic Laves-phase compounds.²

The T_i 's in the magnetic compounds are substantially faster and have a different tempera-

ture dependence. The data obtained for $CeAl₂$, PrAl₂, and NdAl₂ are summarized in Table I, and the data for LaAl, are also given for comparison. Two qualitative features are immediately obvious: (1) As the temperature is lowered, T_1 decreases in the paramagnetic compounds, and (2) the T_i 's are shorter in compounds with higher Curie temperatures.

The behavior of $T₁$ in the paramagnetic state can be qualitatively explained by assuming the presence of two relaxation processes,

$$
\frac{1}{T_1} = \left(\frac{1}{T_1}\right)_S + \left(\frac{1}{T_1}\right)_f, \tag{1}
$$

where $(1/T_1)_{\rm s}$ is the ordinary itinerant-electron Korringa relaxation and $(1/T_1)$ f is caused by the f -electron-nuclear interaction. Since $1/T$, for $LaAl₂$ and $LuAl₂$ is so similar, we assume that $(1/T_1)$ _s is the same for all XAl₂ compounds and equal to $1/T_1$ for LaAl₂. We therefore define

$$
\left(\frac{1}{T_1}\right)_{f}^{\text{expt}} \equiv \left(\frac{1}{T_1}\right)^{\text{obs}} - \left(\frac{1}{T_1}\right)_{\text{LaAl}_1}
$$

This $(1/T_1)_f$ could result from either a direct dipolar interaction' or an indirect interaction via the conduction electrons, or both. However, the calculated dipolar relaxation rates are too small to account for $(1/T_1)_f$ ^{expt} and are from one to two orders of magnitude smaller than that deduced for the indirect process. We describe the latter using an effective hyperfine Hamiltonian of the form $\mathcal{K} = A' \mathbf{\vec{I}} \cdot \mathbf{\vec{S}}$ compounded from an itinerant electron-f exchange interaction expressed as $\mathcal{R}_{ex} = \mathcal{S}_{sf} \vec{S} \cdot \vec{s}$ and the normal itinerant-electron hyperfine interaction $\mathcal{K} = A\vec{\mathbf{I}} \cdot \vec{\mathbf{s}}$. Empirical values for A' are obtained from Knight-shift measurements. In the notation given here, $A'=(\gamma_n/\gamma_e)$ $\times K_0\mathfrak{S}_S f$ and values for K_0 and $\mathfrak{S}_S f$ are given in Ref. 1. The relaxation rate can be expressed in terms of autocorrelation functions using the techniques of Kubo and Tomita,⁴ and the result ob-

Table I. Spin-lattice relaxation rates in XA1₂ compounds. (Values of $1/T_1$ for the A1²⁷ nuclei are given in units of sec^{-1} .)

T		CeAl ₂		PrAl ₂		NdAl,	
(°K)	LaAl ₂	$(1/T_{\rm~1})^{\rm obs}$	$(1/T_{\rm 1})$ f $\rm exp t$	$(1/T_1)^{\rm obs}$	$(1/T_1)_f^{\rm expt}$.	$(1/T_1)^{obs}$	$(1/T_1)f^{\text{expt}}$
77	7.4	74	66	280	273	\cdots	\cdots
190	16.4	68.0	51.6	194	178.6	344	328
300	28.2	71.5	43.3	178	149.8	303	275
373	35.1 $(1/T_1)_f$ theor	80	45 61.5	166	131 124	274	239 182

tained in the infinite temperature limit is⁵

$$
\left(\frac{1}{T_1}\right)^{\text{theor}} = \frac{1}{3}(2\pi)^{1/2} \left(\frac{A'}{\hbar}\right)^2 S(S+1)\tau_C, \tag{2}
$$

where it is assumed that the s - f exchange causes the f-electron spin autocorrelation function $\langle S_i(\tau)S_i(0)\rangle$ to decay with a characteristic time $\tau_c \simeq \hbar E \text{F}/(\mathcal{S}_s f)^2 \simeq 10^{-14} \text{ sec.}^6$ Comparison of $(1/$ (T_1) _f expt and $(1/T_1)$ _f^{theor} in Table I indicate that this indirect mechanism is sufficient to account for the observed relaxation rate.

The calculations in Ref. 5 indicate that the temperature dependence of the relaxation rate should be extremely weak. In light of this, the substantial temperature dependence of the present observations is surprising. Further, previous measurements of the F^{19} NMR in paramagnetic MnF₂ showed that ΔH (which is related to T_1)⁷ narrows significantly as the temperature is lowered.⁸ Therefore, the observations indicate that spin-lattice relaxation in MnF₂ decreases as T is lowered, while it increases under the same conditions in the $XAl₂$ compounds.

A property common to both the Al^{27} site in $XAl₂$ and the $F¹⁹$ site in MnF₂ is that the hyperfine field at these sites is the result of indirect hyperfine interactions with the neighboring magnetic atoms. Fluctuations of the electronic spins on these atoms cause spin-lattice relaxation and the linewidth. At infinite temperature, these spins are completely uncorrelated and make statistically independent contributions to the components of the fluctuating hyperfine fields at the nucleus. However, with decreasing temperature the paramagnetic spins develop parallel (antiparallel) correlations in ferromagnets (antiferromagnets). In the limit that kT is high compared with any anisotropy or Zeeman energy, the hyperfine fields remain random, but with magnitudes which are correspondingly enhanced (reduced) in ferromagnets (antiferromagnets). This explains the fact that relaxation rates (or linewidths) increase in ferromagnets and decrease in antiferromagnets as the temperature decreases and pair correlation becomes increasingly important.

The case of the F^{19} nucleus in MnF₂ is shown explicitly in the insert to Fig. 1, where S_1 , S_2 , and S_3 contribute to the hyperfine field at the \mathbf{F}^{19} site and spins S_1 and S_3 and S_2 and S_3 are coupled by antiferromagnetic exchange. As a result of the exchange coupling, pair correlation function

FIG. 1. Relaxation rates as a function of T_0/T for MnF_2 ¹⁹ and PrA1₂²⁷. Included for comparison are the results (to order J/kT) of the high-temperature paircorrelation theory discussed in this paper and the autocorrelation theory of Moriya (Ref. 3). The range of validity of the first-order pair-correlation theory is T $> 5T_0$. The local environment of the F¹⁹ nucleus in $MnF₂$ is shown in the insert.

for (S_1, S_3) and (S_2, S_3) will be nonvanishing and must be included along with the autocorrelation functions in any calculation of T_1 and ΔH . The temperature dependence resulting from such pair correlations is illustrated by the following model calculation. Neglecting the effect of an external magnetic field, and assuming an isotropic hyperfine interaction, the Hamitonian describing the system is of the form

$$
\mathcal{K} = A I_z (S_{1z} + S_{2z} + S_{3z}) + \sum_{i < j} J_{ij} \vec{S}_i \cdot \vec{S}_j,\tag{3}
$$

where J is assumed to be much greater than A and limited to next-nearest neighbors. Using the equation of motion method, the second moment has the form

$$
\hbar \langle \omega^2 \rangle = A^2 \langle \langle S_{1z} S_{1z} \rangle + \langle S_{2z} S_{2z} \rangle + \langle S_{3z} S_{3z} \rangle
$$

+ $\langle S_{1z} S_{2z} \rangle + \langle S_{2z} S_{3z} \rangle + \langle S_{3z} S_{1z} \rangle$, (4)

where

$$
\langle S_{i\alpha} S_{j\beta} \rangle = \text{Tr} \{ S_{i\alpha} S_{j\beta} e^{-\beta_0 \mathcal{R}} \} / \text{Tr} \{ e^{-\beta_0 \mathcal{R}} \},
$$

$$
\beta_0 = 1/kT.
$$

In the high-temperature limit $\langle S_{iz}S_{iz}\rangle = \frac{1}{3}S(S+1)$ $\times \delta_{ij}$ and no pair correlation exists. Expanding $e^{-\beta_0\mathcal{K}}$ to first order in J/kT in the expression for the expectation value, the two nonvanishing terms are $\langle S_{1z}S_{3z}\rangle = \langle S_{2z}S_{3z}\rangle = -4(J/k)T\left[\frac{1}{3}S(S)\right]$ $(+1)^2$, so a temperature-dependent pair correlation term exists. In the exchange-narrowed limit.⁹

$$
\frac{1}{T_1} \simeq \frac{1}{T_2} = \gamma \Delta H \left(\frac{\gamma \pi}{2\sqrt{3}}\right) \frac{\langle \omega^2 \rangle^{3/2}}{\langle \omega^4 \rangle^{1/2}}.
$$

A similar calculation of the fourth moment $\langle \omega^4 \rangle$ shows its temperature dependence to be weak and to be equivalent to that of the autocorrelation and to be equivalent to that of the autocorrelation
function calculated by Moriya.³ It is interesting to note that this temperature variation is much weaker than that of the pair correlation. Hence we ascribe the observed variation in T_1 and ΔH to the temperature dependence of the second moment. Relating T_c to J using the molecularfield approximation, we obtain,

$$
\frac{1}{T_1} \simeq \frac{1}{T_2} \simeq \left(1 - \frac{1}{4} \frac{T_N}{T}\right).
$$
\n(5a)

Employing a similar argument for the $XAI₂$ compounds,

$$
\frac{1}{T_1} \simeq \frac{1}{T_2} \propto \left(1 + \frac{1}{2} \frac{T_c}{T}\right). \tag{5b}
$$

The experimental data for T_1 for $\rm MnF_2^{\, 19}$ and PrAl₂²⁷ are shown in Fig. 1 as a function of T_0/T , where T_0 is the ordering temperature $(T_0 = T_N)$ =67°K for MnF₂; $T_0 = T_c = 35$ °K for PrAl₂). In addition, the temperature dependence predicted from Eqs. (5a) and (5b) are plotted. All of this is to be contrasted to the case of a nucleus coupled to only one spin, where $\langle \omega^2 \rangle \propto \langle S_{iz} S_{iz} \rangle$ and as discussed above, the temperature dependence of T_1 or ΔH is expected to be negligible. As one example, a measurement of the Mn⁵⁵ NMR linewidth in MnO in the paramagnetic state indeed
shows $(\Delta H)^{55}$ to be temperature independent.¹⁰ shows $(\Delta H)^{55}$ to be temperature independent.¹⁰

In conclusion it has been shown that pair correlation accounts for the appropriate sign and magnitude of the temperature dependence of the observed relaxation processes in the case of indirect coupled hyperfine interactions. In these 1094

cases, relaxation measurements can serve as a useful tool for the determination of pair correlation. It is significant to note that deviations from the first-order high-temperature expansion occur at $T \sim 5T_c$, indicating a substantial amount of short-range order even at these temperatures. It should also be emphasized that the temperature dependence of the fourth moment, which is a measure of the autocorrelation function, is much weaker than that of the pair correlation. Therefore, the relaxation properties should show only a weak temperature dependence in the case of direct coupled hyperfine interactions. Preliminary measurements in $KMnF₃$ in the paramagnetic state also support these conclusions. Further work on these systems is in progress and will be reported elsewhere.

We wish to thank Professor D. Hone for his continued interest in this work and for many interesting discussions.

¹V. Jaccarino, B. T. Matthias, M. Peter, H. Suhl, and J. H. Wernick, Phys. Rev. Letters 5, 524 (1960).

²In YbAl₂, $1/T_1T = 0.128$ (°K sec)⁻¹. This somewhat different value of $1/T₁T$ may be a consequence of its divalent electronic configuration (i.e., [Xe] $4f^{14}$ 6s² instead of [Xe] $4f^25d6s^2$) as discussed by A. C. Gossard, V. Jaccarino, and J. H. Wernick, Phys, Rev. 133, A881 (1964).

 3 T. Moriya, Progr. Theoret. Phys. (Kyoto) 16, 23 (1956).

 R . Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).

 5 T. Moriya, Progr. Theoret. Phys. (Kyoto) 16, 641 (1956).

⁶The decay of $\langle S_i(\tau)S_i(0)\rangle$ is assumed to arise from the indirect exchange interaction J_{ff} between the rareearth spins. Thus $\tau_c = \tau_{ff} \approx \hbar E_F/(\tilde{3} s_f)^2$. A competitive mode of decay is via the direct interaction \mathfrak{F}_{sf} with the conduction electrons whose characteristic time is $\tau_{S}f$ $\simeq \hbar E_F/(\mathcal{S}^2 s f)^2(E_F/kT)$. Since $1/\tau_f f = (E_F/kT)1/\tau_s f$ indirect process dominates.

 $Kubo$ and Tomita demonstrate that, in the exchangenarrowed limit, the linewidth is directly related to the transverse and longitudinal correlation functions. Assuming that the fluctuations of the Mn spins and the hyperfine coupling are nearly isotropic in the paramagnetic state, we have the relation $\gamma \Delta H = 1/T_2 \approx 1/T_1$.

[°]R. Shulman and V. Jaccarino, Phys. Rev. 108, 1219 (1957).

 9 P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269 (1953).

 10 E. D. Jones, Phys. Rev. 151, 315 (1966).

^{*}Work supported in part by the National Science Foundation and a generous equipment loan from the GM/AC Defense Research Laboratories, Santa Barbara, Calif.

⁾Work supported in part by the National Science Foundation and the U. S. Office of Naval Research, Contract No. Nonr 233(88).